Publications by authors named "Fenglin Yuan"

The identification of models capable of rapidly predicting material properties enables rapid screening of large numbers of materials and facilitates the design of new materials. One of the leading challenges for computational researchers is determining the best ways to analyze large material data sets to identify models that can rapidly predict a given property. In this paper, we demonstrate the use of genetic programming to generate simple models of dielectric breakdown based on 82 representative dielectric materials.

View Article and Find Full Text PDF

Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g.

View Article and Find Full Text PDF

Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy.

View Article and Find Full Text PDF

Current understanding of the brittleness of glass is limited by our poor understanding and control over the microscopic structure. In this study, we used a pressure quenching route to tune the structure of silica glass in a controllable manner, and observed a systematic increase in ductility in samples quenched under increasingly higher pressure. The brittle to ductile transition in densified silica glass can be attributed to the critical role of 5-fold Si coordination defects (bonded to 5 O neighbors) in facilitating shear deformation and in dissipating energy by converting back to the 4-fold coordination state during deformation.

View Article and Find Full Text PDF