Publications by authors named "Fengkai Wu"

Abiotic and biotic stresses globally constrain plant growth and impede the optimization of crop productivity. The phytohormone auxin is involved in nearly every aspect of plant development. Auxin acts as a chemical messenger that influences gene expression through a short nuclear pathway, mediated by a family of specific DNA-binding transcription factors known as Auxin Response Factors (ARFs).

View Article and Find Full Text PDF

Prolonged exposure to abiotic stresses causes oxidative stress, which affects plant development and survival. In this research, the overexpression of ZmARF1 improved tolerance to low Pi, drought and salinity stresses. The transgenic plants manifested tolerance to low Pi by their superior root phenotypic traits: root length, root tips, root surface area, and root volume, compared to wide-type (WT) plants.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) play an important role in diverse biological processes; however, their origin and functions, especially in plants, remain largely unclear. Here, we used 2 maize (Zea mays) inbred lines, as well as 14 of their derivative recombination inbred lines with different drought sensitivity, to systematically characterize 8,790 circRNAs in maize roots under well-watered (WW) and water-stress (WS) conditions. We found that a diverse set of circRNAs expressed at significantly higher levels under WS.

View Article and Find Full Text PDF

Eight selected hotspots related to ear traits were identified from two maize-teosinte populations. Throughout the history of maize cultivation, ear-related traits have been selected. However, little is known about the specific genes involved in shaping these traits from their origins in the wild progenitor, teosinte, to the characteristics observed in modern maize.

View Article and Find Full Text PDF

Phosphorus (P) deficiency is one of the most critical factors for plant growth and productivity, including its inhibition of lateral root initiation. Auxin response factors (ARFs) play crucial roles in root development via auxin signaling mediated by genetic pathways. In this study, we found that the transcription factor ZmARF1 was associated with low inorganic phosphate (Pi) stress-related traits in maize.

View Article and Find Full Text PDF

GIGANTEA (GI) is a conserved nuclear protein crucial for orchestrating the clock-associated feedback loop in the circadian system by integrating light input, modulating gating mechanisms, and regulating circadian clock resetting. It serves as a core component which transmits blue light signals for circadian rhythm resetting and overseeing floral initiation. Beyond circadian functions, influences various aspects of plant development (chlorophyll accumulation, hypocotyl elongation, stomatal opening, and anthocyanin metabolism).

View Article and Find Full Text PDF

Adsorbents consisting of spherical nanoparticles exhibit superior adsorption performance and hence, have immense potential for various applications. In this study, a tri-aldehyde spherical nanoadsorbent premodification platform (CTNAP), which can be grafted with various amino acids, was synthesized from corn stalk. Subsequently, two all-biomass spherical nanoadsorbents, namely, cellulose/l-lysine (CTNAP-Lys) and cellulose/L-cysteine (CTNAP-Cys), were prepared.

View Article and Find Full Text PDF
Article Synopsis
  • Long noncoding RNAs (lncRNAs) are transcripts over 200 nucleotides long that have limited ability to code for proteins and are crucial for plant stress responses, especially in maize.
  • The study examined drought-tolerant and drought-sensitive maize lines to identify lncRNAs that respond to drought stresses, revealing that down-regulated lncRNAs were more common than changes in protein-coding genes.
  • A comprehensive co-expression network of lncRNAs and coding genes was built, uncovering modules linked to drought survival and identifying specific SNPs in lncRNAs associated with plant resilience under drought conditions.
View Article and Find Full Text PDF

Plant trichomes are epidermal structures with a wide variety of functions in plant development and stress responses. Although the functional importance of trichomes has been realized, the tedious and time-consuming manual phenotyping process greatly limits the research progress of trichome gene cloning. Currently, there are no fully automated methods for identifying maize trichomes.

View Article and Find Full Text PDF

Lateral organ boundaries domain (LBD) proteins are plant-specific transcription factors. Class-I LBD genes have been widely demonstrated to play pivotal roles in organ development; however, knowledge on class-II genes remains limited. Here, we report that ZmLBD5, a class-II LBD gene, is involved in the regulation of maize (Zea mays) growth and the drought response by affecting gibberellin (GA) and abscisic acid (ABA) synthesis.

View Article and Find Full Text PDF

Teosinte improves maize grain yield and broadens the maize germplasm. Seventy-one quantitative trait loci associated with 24 differential traits between maize and teosinte were identified. Maize is a major cereal crop with a narrow germplasm that has limited its production and breeding progress.

View Article and Find Full Text PDF

Fusarium ear rot (FER) is a common fungal disease in maize ( L.) caused by . Resistant germplasm resources for FER are rare in cultivated maize; however, teosintes ( ssp.

View Article and Find Full Text PDF

Root architecture remodelling is critical for forage moisture in water-limited soil. DEEPER ROOTING 1 (DRO1) in Oryza, Arabidopsis, and Prunus has been reported to improve drought avoidance by promoting roots to grow downward and acquire water from deeper soil. In the present study, we found that ZmDRO1 responded more strongly to abscisic acid (ABA)/drought induction in Zea mays ssp.

View Article and Find Full Text PDF

Drought stress is known to significantly limit crop growth and productivity. Lateral organ boundary domain (LBD) transcription factors-particularly class-I members-play essential roles in plant development and biotic stress. However, little information is available on class-II genes related to abiotic stress in maize.

View Article and Find Full Text PDF

Maize () is an important multi-functional crop. The growth and yield of maize are severely affected by drought stress. Previous studies have shown that microRNAs (miRNAs) in maize play important roles in response to abiotic stress; however, their roles in response to drought stress in maize roots is unclear.

View Article and Find Full Text PDF

Plant growth and development are closely related to phosphate (Pi) and auxin. However, data regarding auxin response factors (ARFs) and their response to phosphate in maize are limited. Here, we isolated in maize and dissected its biological function response to Pi stress.

View Article and Find Full Text PDF

DNA methylation is important for plant growth, development, and stress response. To understand DNA methylation dynamics in maize roots under water stress (WS), we reanalyzed DNA methylation sequencing data to profile DNA methylation and the gene expression landscape of two inbred lines with different drought sensitivities, as well as two of their derived recombination inbred lines (RILs). Combined with genotyping-by-sequencing, we found that the inheritance pattern of DNA methylation between RILs and parental lines was sequence-dependent.

View Article and Find Full Text PDF

Although plant-specific NAC transcription factors play crucial roles in response to abiotic stress, few reports describe the regulation of NAC genes in maize (Zea mays) by the cis-natural antisense transcripts (cis-NATs). In this study, 521 NAC genes from Gramineae were classified, of which 51 NAC genes contained cis-NATs. ZmNAC48 and cis-NATZmNAC48 co-localized to the same cell nucleus, and both transcripts responded to drought stress.

View Article and Find Full Text PDF

Low P stress is a global issue for grain production. Significant phenotypic differences were detected among 13 traits in 356 maize lines under P-sufficient and P-deficient conditions. Significant single nucleotide polymorphisms (SNPs) and low-P stress-responsive genes were identified for 13 maize root traits based on a genome-wide association study.

View Article and Find Full Text PDF

Sweet corn juice is becoming increasingly popular in China. In order to provide valuable health-related information to consumers, the nutritional and physicochemical characteristics of raw and boiled purple sweet corn juices were herein investigated. Sugars, antinutrients, total free phenols, anthocyanins, and antioxidant activity were analyzed by conventional chemical methods.

View Article and Find Full Text PDF

It has long been considered that mechanical impedance on root will restrict root elongation and consequently promote radial growth. When seedlings grew in sands, we did observe radial expansion of roots and it, however, arose before elongation restriction. Mechanical impedance of sands can be classified into frontal- and lateral-type based on the interaction site of root.

View Article and Find Full Text PDF

Colloidal semiconductor nanocrystals (NCs) are a promising materials class for solution-processable, next-generation electronic devices. However, most high-performance devices and circuits have been achieved using NCs containing toxic elements, which may limit their further device development. We fabricate high mobility CuInSe NC field-effect transistors (FETs) using a solution-based, post-deposition, sequential cation exchange process that starts with electronically coupled, thiocyanate (SCN)-capped CdSe NC thin films.

View Article and Find Full Text PDF

Heterochromatin is a tightly packed form of chromatin that is associated with DNA methylation and histone 3 lysine 9 methylation (H3K9me). Here, we identify an H3K9me2-binding protein, Agenet domain (AGD)-containing p1 (AGDP1), in Arabidopsis thaliana. Here we find that AGDP1 can specifically recognize the H3K9me2 mark by its three pairs of tandem AGDs.

View Article and Find Full Text PDF

ZEITLUPE (ZTL), LOV KELCH PROTEIN 2 (LKP2), and FLAVIN-BINDING KELCH REPEAT F-BOX 1 (FKF1)-blue-light photoreceptors-play important roles in regulating the circadian clock and photoperiodic flowering pathway in plants. In this study, phylogenetic analysis revealed that the LOV (Light, Oxygen, or Voltage) and Kelch repeat-containing F-box (LFK) gene family can be classified into two clades, ZTL/LKP2 and FKF1, with clear differentiation between monocots and dicots within each clade. The LFK family genes underwent strong purifying selection; however, signatures of positive selection to adapt to local conditions still existed in 18 specific codons.

View Article and Find Full Text PDF

Natural antisense transcripts (NATs) are a prominent and complex class of regulatory RNAs. Using strand-specific RNA sequencing, we identified 1769 sense and antisense transcript pairs (NAT pairs) in two maize inbreds with different sensitivity to drought, as well as in two derivative recombination inbred lines (RILs). A significantly higher proportion of NATs relative to non-NATs are specifically expressed under water stress (WS).

View Article and Find Full Text PDF