Publications by authors named "Fengkai Guo"

Recently, YbCdSb-based Zintl compounds have been widely investigated owing to their extraordinary thermoelectric (TE) performance. However, its p orbitals of anions that determined the valence band structure are split due to crystal field splitting that provides a good platform for band manipulation by doping/alloying and, more importantly, the YbCdSb-based device has yet to be reported. In this work, single-phase YbCdZnSb is successfully obtained through precise chemical composition control.

View Article and Find Full Text PDF

Metavalent bonding is a unique bonding mechanism responsible for exceptional properties of materials used in thermoelectric, phase-change, and optoelectronic devices. For thermoelectrics, the desired performance of metavalently bonded materials can be tuned by doping foreign atoms. Incorporating dopants to form solid solutions or second phases is a crucial route to tailor the charge and phonon transport.

View Article and Find Full Text PDF

Motivated by the surging demand for low-temperature waste heat harvesting, materials with both prominent thermoelectric and good mechanical properties are preferred in practical applications. In this present work, the composite exploration of Te-doped MgBiSb- vol % nanosized SiC ( = 0, 0.05, 0.

View Article and Find Full Text PDF

The lack of desirable diffusion barrier layers currently prohibits the long-term stable service of bismuth telluride thermoelectric devices in low-grade waste heat recovery. Here we propose a new design principle of barrier layers beyond the thermal expansion matching criterion. A titanium barrier layer with loose structure is optimized, in which the low Young's modulus and particle sliding synergistically alleviates interfacial stress, while the TiTe reactant enables metallurgical bonding and ohmic contact between the barrier layer and the thermoelectric material, leading to a desirable interface characterized by high-thermostability, high-strength, and low-resistivity.

View Article and Find Full Text PDF

Thermoelectric interface materials (TEiMs) are essential to the development of thermoelectric generators. Common TEiMs use pure metals or binary alloys but have performance stability issues. Conventional selection of TEiMs generally relies on trial-and-error experimentation.

View Article and Find Full Text PDF

The Wittig reaction, which is one of the most effective methods for synthesizing alkenes from carbonyl compounds, generally gives thermodynamically stable -alkenes, and synthesis of trisubstituted -alkenes from ketones presents notable challenges. Here, we report what we refer to as Wittig/B─H insertion reactions, which innovatively combine a Wittig reaction with carbene insertion into a B─H bond and constitute a promising method for the synthesis of thermodynamically unstable trisubstituted -boryl alkenes. Combined with the easy transformations of boryl group, this methodology provides efficient access to a variety of previously unavailable trisubstituted -alkenes and thus provides a platform for discovery of pharmaceuticals.

View Article and Find Full Text PDF

Chemical bonds determine electron and phonon transport in solids. Tailoring chemical bonding in thermoelectric materials causes desirable or compromise thermoelectric transport properties. In this work, taking an example of CaMg Bi with covalent and ionic bonds, density functional theory calculations uncover that element Zn, respectively, replacing Ca and Mg sites cause the weakness of ionic and covalent bonding.

View Article and Find Full Text PDF

Thermal properties strongly affect the applications of functional materials, such as thermal management, thermal barrier coatings, and thermoelectrics. Thermoelectric (TE) materials must have a low lattice thermal conductivity to maintain a temperature gradient to generate the voltage. Traditional strategies for minimizing the lattice thermal conductivity mainly rely on introduced multiscale defects to suppress the propagation of phonons.

View Article and Find Full Text PDF

Thermoelectric refrigeration is one of the mature techniques used for cooling applications, with the great advantage of miniaturization over traditional compression refrigeration. Due to the anisotropic thermoelectric properties of n-type bismuth telluride (Bi Te ) alloys, these two common methods, including the liquid phase hot deformation (LPHD) and traditional hot forging (HF) methods, are of considerable importance for texture engineering to enhance performance. However, their effects on thermoelectric and mechanical properties are still controversial and not clear yet.

View Article and Find Full Text PDF

It is known that Yb-filled skutterudite with excellent thermoelectric performance is promising for a power generation device in the intermediate temperature region. Here we created a new approach to obtain nanostructured materials by adding Si to Co-overstoichiometric Yb-filled skutterudite through high-energy ball milling, which embedded bottom-up formed CoSi nanoparticles into grain-refining YbCoSb, synergistically resulting in the enhanced thermoelectric properties and room-temperature hardness. On one hand, the abundant grain boundaries and phase interfaces effectively blocked the propagation of medium-low frequency phonons, resulting in a lower lattice thermal conductivity.

View Article and Find Full Text PDF

Environmentally friendly MgSb-based materials have drawn intensive attention owing to their promising thermoelectric performance. In this work, the electrical properties of p-type MgSb are dramatically optimized by the regulation of Mg deficiency. Then, we, for the first time, found that Zn substitution at the Mg2 site leads to the alignment of and orbital, resulting in a high band degeneracy and the dramatically enhanced Seebeck coefficient, demonstrated by the DFT calculations and electronic properties measurement.

View Article and Find Full Text PDF

Bi Te -related alloys dominate the commercial thermoelectric market, but the layered crystal structure leads to the dissociation and intrinsic brittle fracture, especially for single crystals that may worsen the practical efficiency. In this work, point defect configuration by S/Te/I defects engineering is engaged to boost thermoelectric and mechanical properties of n-type Bi Te alloy, which, coupled with p-type BiSbTe, shows a competitive conversion efficiency for the fabricated module. First, as S alloying suppresses the intrinsic antisite defects and forms a donor-like effect, electronic transport properties are optimized, associated with the decreased thermal conductivity due to the point defect scattering.

View Article and Find Full Text PDF

We have developed a protocol for insertion of alkylidene carbenes into the B-H bonds of amine-borane adducts, enabling, for the first time, the construction of C(sp)-B bonds by means of carbene-insertion reactions. Various acyclic and cyclic alkenyl borane-amine adducts were prepared from readily accessible starting materials in good to high yields and were subsequently subjected to a diverse array of functional group transformations. The unprecedented spiro B-N heterocycles prepared in this study have potential utility as building blocks for the synthesis of pharmaceuticals.

View Article and Find Full Text PDF

CaMgBi-based compounds, a kind of the representative compounds of Zintl phases, have uniquely inherent layered structure and hence are considered to be potential thermoelectric materials. Generally, alloying is a traditional and effective way to reduce the lattice thermal conductivity through the mass and strain field fluctuation between host and guest atoms. The cation sites have very few contributions to the band structure around the fermi level; thus, cation substitution may have negligible influence on the electric transport properties.

View Article and Find Full Text PDF

Herein, we demonstrate a synergistic combination of novel mechanisms in aluminum (Al)-alloyed YbCoSb-based thermoelectric materials to address both reduction in thermal conductivity and concomitant enhancement in power factor (PF). Upon Al alloying, CoAl nanoprecipitates are embedded in the matrix, leading to (1) significant local strain and thus intensified phonon scattering and (2) carrier injection because of interphase electron transfer. Moreover, by decreasing the Yb filling fraction, not only is the electronic thermal conductivity significantly suppressed but also the carrier concentration is modulated to the optimum range, thus resulting in the dramatically boosted PF, especially below 773 K.

View Article and Find Full Text PDF

Bi-based Zintl phase CaMgBi is a promising thermoelectric material. Here, we report that the high-concentration point defects induced by equivalent Zn doping on the Mg site significantly enhance phonon scattering and then suppress lattice thermal conductivity by 50% at room temperature. Subsequently, partial substitution of divalent calcium ions with alkali-ion doping (Li, Na, K) not only optimizes the electrical transport properties by increasing the carrier concentration but also further reduces the lattice thermal conductivity through crystal disorder.

View Article and Find Full Text PDF

We report enhanced thermoelectric performance of SnTe by further increasing its intrinsic high carrier concentration caused by Sn vacancies in contrast to the traditional method. Along with InTe alloying, which results in an enhanced Seebeck coefficient, LiTe is added to further increase the carrier concentration in order to maintain high electrical conductivity. Finally, a relatively high of ∼28 μW cm K in the range between 300 and 873 K is obtained in an optimized SnTe-based compound.

View Article and Find Full Text PDF

Significantly enhanced thermoelectric performance is achieved for eco-friendly SnTe by a coorperative effect between a dopant resonant energy level and interstitial defects. By manipulating the band structure through indium doping, the Seebeck coefficient is remarkably improved, leading to an enhanced power factor, with a high level of ≈29 µW cm K at 873 K. Lattice thermal conductivity is sharply reduced, approaching the amorphous limit, through the strong phonon scattering induced by multiple scales of Cu Te nanoprecipitates, as well as Cu interstitials, leading to a high ZT value of ≈1.

View Article and Find Full Text PDF

SnTe is known as an eco-friendly analogue of PbTe without toxic elements. However, the application potentials of pure SnTe are limited because of its high hole carrier concentration derived from intrinsic Sn vacancies, which lead to a high electrical thermal conductivity and low Seebeck coefficient. In this study, Sn self-compensation and Mn alloying could significantly improve the Seebeck coefficients in the whole temperature range through simultaneous carrier concentration optimization and band engineering, thereby leading to a large improvement of the power factors.

View Article and Find Full Text PDF