Transition-metal-catalyzed C-H activation has proven to be a powerful tool for the late-stage modification of peptides. We herein report a method for site-selective alkylation of peptides with maleimides through Pd-catalyzed β-C(sp)-H activation. In this protocol, the methionine residues within peptides serve as the directing groups, which circumvented the preinstallation and subsequent removal of the directing groups.
View Article and Find Full Text PDFWe present a method for site-selective diversification of peptides Pd-catalyzed β-C(sp)-H olefination/cyclization. In this protocol, the native methionine residue acts as a directing group, enabling site-specific olefination/cyclization of peptides. This chemistry demonstrates broad substrate scope, offering a versatile tool for peptide ligation.
View Article and Find Full Text PDFAn efficient and concise strategy for the synthesis of cyclic dipeptides via Pd-catalyzed site-selective δ-C(sp)-H amination/fluorination and N-to-C cyclization is disclosed. The backbone amides within the dipeptides serves as endogenous directing groups, while the desired products were switched by the C-terminal ester group. This chemistry presents a novel and robust alternative to construct cyclodipeptide fragments.
View Article and Find Full Text PDFBackbone-enabled site-selective modification of peptides with benzoquinone Pd-catalyzed δ-C(sp)-H functionalization has been achieved. The amide groups of peptides serve as internal directional groups, facilitating C-H functionalization through a kinetically less favored six-membered palladacycle. This methodology presents novel opportunities for the late-stage site-selective diversification of peptides.
View Article and Find Full Text PDFAn efficient and straightforward strategy to synthesize imidazo[1,5-]pyridine compounds from phenylalanine and halohydrocarbon has been successfully developed. The protocol features a relay copper-catalyzed reaction involving intermolecular C-O coupling and intramolecular C-N cyclization, providing an approach to access a diverse range of imidazo[1,5-]pyridine derivatives with unique aza quaternary carbon centers.
View Article and Find Full Text PDFSite-selective C-H fluorination is an attractive strategy for directly transforming inert C-H bonds into C-F bonds, yet it remains a significant challenge. Herein, we have developed an efficient and versatile strategy for site-selective fluorination and amination of phenylalanine-containing peptides via late-stage Pd-catalyzed δ-C(sp)-H activation, providing a valuable tool for the in situ synthesis of fluorinated indoline scaffolds within peptides.
View Article and Find Full Text PDFAn efficient and straightforward approach for site-selective functionalization of phenylalanine and phenylalanine-containing peptide via a Pd-catalyzed tandem reaction has been developed. The robust method underwent dual C-H activation, including C-C coupling with benzoquinone and intramolecular C-N cyclization, providing a feasible and rapid synthetic route to incorporate 4-benzoquinone-indoline fragments into peptides.
View Article and Find Full Text PDFEfficient synthesis of phenylalanine-derived oxazoles and imidazolidones can be achieved by copper-catalyzed reactions that are controlled by directing groups and proceed by selective C-O or C-N coupling. This strategy employs inexpensive commercial copper catalysts and readily available starting materials. It uses a convenient reaction procedure and provides a reliable approach to the versatile and flexible assembly of heterocyclic building blocks.
View Article and Find Full Text PDF