Dynamic LR and QR factorization are fundamental problems that exist widely in the control field. However, the existing solutions under noises are lack of convergence speed and anti-noise ability. To this end, this paper incorporates the advantages of Dynamic-Coefficient Type (DCT) and Integration-Enhance Type (IET) Zeroing Neural Dynamic (ZND), and proposes an Adaptive and Robust-Enhanced Neural Dynamic (AREND).
View Article and Find Full Text PDF