Publications by authors named "Fengguo Ma"

 Microfluidic deprotonation approach is proposed to realize continuous, scalable, efficient, and uniform production of aramid nanofibers (ANFs) by virtue of large specific surface area, high mixing efficiency, strong heat transfer capacity, narrow residence time distribution, mild laminar-flow process, and amplification-free effect of the microchannel reactor. By means of monitoring capabilities endowed by the high transparency of the microchannel, the kinetic exfoliation process of original aramid particles is in situ observed and the corresponding exfoliation mechanism is established quantificationally. The deprotonated time can be reduced from the traditional several days to 7 min for the final colloidal dispersion due to the synergistic effect between enhanced local shearing/mixing and the rotational motion of aramid particles in microchannel revealed by numerical simulations.

View Article and Find Full Text PDF

Aerogels, as famous lightweight and porous nanomaterials, have attracted considerable attention in various emerging fields in recent decades, however, both low density and weak mechanical performance make their configuration-editing capability challenging. Inspired by folk arts, herein we establish a highly efficient twice-coagulated (TC) strategy to fabricate configuration-editable tough aerogels enabled by transformable gel precursors. As a proof of concept, aramid nanofibers (ANFs) and polyvinyl alcohol (PVA) are selected as the main components of aerogel, among which PVA forms a flexible configuration-editing gel network in the first coagulation process, and ANF forms a configuration-locking gel network in the second coagulation process.

View Article and Find Full Text PDF

Hemostatic materials have played a significant role in mitigating traumatic injury by controlling bleeding, however, the fabrication of the desirable material's structure to enhance the accumulation of blood cells and platelets for highly efficient hemostasis is still a great challenge. In this work, directed assembly of poly(vinyl alcohol) (PVA) macromolecules covering the rigid Kevlar nanofiber (KNF) network during 3D printing process is utilized to fabricate hydrophilic, biocompatible, and mechanically stable KNF-PVA aerogel filaments for effective enriching blood components by fast water absorption. As such, KNF-PVA aerogel gauzes demonstrate remarkable water permeability (338 mL cm s bar ), water absorption speed (as high as 9.

View Article and Find Full Text PDF

The formation of hot spots is an effective approach to improve the performance of surface-enhanced Raman scattering (SERS). Silk nanoribbons (SNRs), with a height of about 1-2 nm, and Au nanoparticles (AuNPs) were assembled by electrostatic interactions to introduce sandwich hot spot structures. These sandwich structures were optimized by tuning the ratio of SNRs and AuNPs, resulting in strong SERS signals with a sensitivity of 10 M and enhancement factor (EF) of 5.

View Article and Find Full Text PDF