IEEE Trans Image Process
July 2024
An adversarial attack is typically implemented by solving a constrained optimization problem. In top-k adversarial attacks implementation for multi-label learning, the attack failure degree (AFD) and attack cost (AC) of a possible attack are major concerns. According to our experimental and theoretical analysis, existing methods are negatively impacted by the coarse measures for AFD/AC and the indiscriminate treatment for all constraints, particularly when there is no ideal solution.
View Article and Find Full Text PDFFeatures, logits, and labels are the three primary data when a sample passes through a deep neural network (DNN). Feature perturbation and label perturbation receive increasing attention in recent years. They have been proven to be useful in various deep learning approaches.
View Article and Find Full Text PDF