Publications by authors named "Fengfeng Zhao"

Background: Insulin resistance (IR) induces hyperinsulinemia, which activates downstream signaling pathways such as the phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathway, ultimately leading to abnormal proliferation and apoptosis of endometrial cells. This is thought to be a key pathogenic mechanism underlying the development of endometrial polyps (EP). This study aims to investigate the relationship between IR and the development of EP, the expression levels of downstream signaling molecules, including PI3K and AKT, and related laboratory parameters were examined.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the effectiveness and safety of Allisartan Isoproxil in the management of hypertension.

Methods: A comprehensive search was conducted across both English and Chinese databases, including the Cochrane Library, Embase, PubMed, Web of Science, Chinese Journal Full Text Database (CNKI), Wanfang Digital Periodical Full Text Database, and VIP Chinese Periodical Database (VIP), up to March 24, 2024. Randomized controlled trials (RCTs) investigating alisartan axetil for hypertension management were selected.

View Article and Find Full Text PDF

Purpose: Early identification of hematoma enlargement and persistent hematoma expansion (HE) in patients with cerebral hemorrhage is increasingly crucial for determining clinical treatments. However, due to the lack of clinically effective tools, radiomics has been gradually introduced into the early identification of hematoma enlargement. Though, radiomics has limited predictive accuracy due to variations in procedures.

View Article and Find Full Text PDF

The cell nucleus serves as the pivotal command center of living cells, and delivering therapeutic agents directly into the nucleus can result in highly efficient anti-tumor eradication of cancer cells. However, nucleus-targeting drug delivery is very difficult due to the presence of numerous biological barriers. Here, three antitumor drugs (DNase I, ICG: indocyanine green, and THP: pirarubicin) were sequentially triggered protein self-assembly to produce a nucleus-targeting and programmed responsive multi-drugs delivery system (DIT).

View Article and Find Full Text PDF

Intrinsically magnetic cells naturally occur within organisms and are believed to be linked to iron metabolism and certain cellular functions while the functional significance of this magnetism is largely unexplored. To better understand this property, an approach named Optical Tracking-based Magnetic Sensor (OTMS) has been developed. This multi-target tracking system is designed to measure the magnetic moment of individual cells.

View Article and Find Full Text PDF

Influenza A epidemics, which occur annually in varying degrees worldwide, is a global challenge to healthcare facilities owing to several limitations of the current detection methods. Therefore, the development of a rapid, convenient, and economical method for the early diagnosis of influenza A will aid clinical treatment and epidemic control. Currently, most of the commonly used clinical rapid tests utilize colloidal gold test strips that detect specific influenza virus antigens but are limited by low sensitivity.

View Article and Find Full Text PDF

Breast cancer is a highly prevalent malignancy worldwide among women with an increasing incidence in recent years. Triple-negative breast cancer (TNBC), a specific type of breast cancer, occurs primarily in young women and exhibits large tumor size, high clinical stage, and extremely poor prognosis with a high rate of lymph node, liver, and lung metastases. TNBC is insensitive to endocrine therapy and trastuzumab treatment, and there is an urgent need for effective therapeutics and treatment guidelines.

View Article and Find Full Text PDF

Ever since the catalytic hairpin assembly (CHA) circuit has been highlighted as a powerful nucleic acid detection tool, nucleic acid detection methods based on CHA have been widely studied. However, the detection sensitivity of CHA-based methods is insufficient. The relatively high background signals resulting from the spontaneous reaction between the two hairpin probes is one of the major reasons for limiting the sensitivity of CHA.

View Article and Find Full Text PDF

Graphene conductive inks have attracted significant attention in recent years due to their high conductivity, corrosion resistance, and environmentally friendly nature. However, the dispersion of graphene in aqueous solution is still challenging. In this work, we synthesized an amphiphilic graft copolymer, polyvinyl alcohol-g-polyaniline (PVA-g-PANI), and studied the graphene dispersion prepared with the graft copolymer by high-speed shear dispersion.

View Article and Find Full Text PDF

Accurately identifying multidrug-resistant (MDR) bacteria from clinical samples has long been a challenge. Herein, we report a simple and programmable dual-mode aptasensor called DAPT to reliably detect MDR bacteria. The DAPT method comprises two elements, namely the mode of dynamic light scattering (Mode-DLS) for ultrasensitive detection and the mode of fluorescence (Mode-Flu) for reliable quantification as a potent complement.

View Article and Find Full Text PDF

Traffic sign detection is a challenging problem in the field of unmanned driving, particularly important in complex environments. We propose a method, based on the improved You only look once (YOLO) v4, to detect and recognize multiscale traffic signs in complex environments. This method employs an image preprocessing module that can classify and denoize images of complex environments and then input the images into the improved YOLOv4.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses a common genital mycoplasma that can lead to reproductive issues and negative pregnancy outcomes in both men and women.
  • Traditional diagnostic methods, like pathogen culture and PCR, are slow and require specialized equipment and trained personnel.
  • A new detection method is introduced that combines catalytic hairpin assembly with a lateral flow immunoassay, allowing results in just 30 minutes using simple tools like a water bath and fluorescence reader.
View Article and Find Full Text PDF

Influenza viruses and respiratory syncytial virus (RSV) have contributed to severe respiratory infections, causing huge economic and healthcare burdens. To achieve rapid and precise detection of influenza viruses and RSV, we proposed a catalytic hairpin assembly (CHA) combined with the lateral flow immunoassay (CHA-LFIA) detection method. The presence of the target RNA triggers the initiation of CHA circuits.

View Article and Find Full Text PDF
Article Synopsis
  • Immunotherapy shows promise for treating head and neck squamous cell carcinoma (HNSCC), but only a few patients benefit, highlighting the need for reliable markers to predict treatment outcomes.
  • CLEC10A is noted for enhancing immune cell activity, yet its impact on HNSCC prognosis and immune environment had not been thoroughly investigated prior to this study.
  • The study found that lower CLEC10A levels in HNSCC are linked to worse prognosis and advanced disease, while higher levels correspond with better immune response and immunotherapy effectiveness, suggesting CLEC10A could serve as a key prognostic and therapeutic target.
View Article and Find Full Text PDF

Currently, PCR is the gold standard for the detection of hepatitis C virus (HCV). However, the PCR technique is complicated and time-consuming, which prevents its application and, clinical point-of-care testing (POCT). Herein, we report a POCT method with simplicity, high sensitivity and specificity, which consists of a catalytic hairpin assembly (CHA) signal amplification system coupled with a lateral flow immunochromatographic (LFIA) test strip for the detection of HCV.

View Article and Find Full Text PDF

This study aimed to explore the association of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) with cancer progression and prognosis in head and neck squamous cell carcinoma (HNSCC). Differentially expressed genes (DEGs) were identified by LIMMA package using R software. The correlation between the expression levels of MMPs and TIMPs in HNSCC cancer samples and adjacent normal tissue samples was performed using Pearson correlation analysis.

View Article and Find Full Text PDF

Drug combination therapy for cancer treatment exerts a more potent antitumor effect. The targeted delivery and release of multiple drugs in a patient's body thus presents a more effective treatment approach, warranting further research. Two antitumor drugs (ICG: indocyanine green and THP: pirarubicin) were successfully screened to sequentially trigger self-assembling peptides (P60) to produce bacteria-sized particles (500-1000 nm, P60-ICG-THP).

View Article and Find Full Text PDF

Decorating the membrane surface of vesicle carriers with proteins for targeted delivery has been achieved mainly by chemical methods. In this study, we report the rational design of a lipid-mimicking peptide for biomembrane decoration without chemical conjugation. A peptide Pm45 consisting of a hydrophobic helical tail and an anionic headgroup linked with an integrin-targeting RGD moiety was manually designed.

View Article and Find Full Text PDF

Recently, the long noncoding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) was reported to be involved in the pathogenesis of several cancers, including human colorectal cancer (CRC). However, the molecular basis for cancer initiation, development, and progression remains unclear. In this study, we observe that upregulated PVT1 is associated with poor prognosis and bad clinicopathological features of CRC patients.

View Article and Find Full Text PDF

A facile strategy with no modification processes was demonstrated to fabricate a pH-responsive end-capped mesoporous silica nanoparticle (MSN)-based drug delivery system (DDS). The simple but smart nanovalve systems were constructed by the self-assembly behavior of unbonded peptide-based amphiphile (P45) in the presence of Doxorubicin hydrochloride (Dox). A series of characterizations confirmed that the DDSs had been successfully fabricated.

View Article and Find Full Text PDF

A novel multifunctional nano-drug delivery system based on reversal of peptide charge was successfully developed for anticancer drug delivery and imaging. Mesoporous silica nano-particles (MSN) ~50 nm in diameter were chosen as the drug reservoirs, and their surfaces were modified with HIV-1 transactivator peptide-fluorescein isothiocyanate (TAT-FITC) and YSA-BHQ1. The short TAT peptide labeled with FITC was used to facilitate intranuclear delivery, while the YSA peptide tagged with the BHQ1 quencher group was used to specifically bind to the tumor EphA2 membrane receptor.

View Article and Find Full Text PDF

In this study, we designed and fabricated self-assembly nanospheres, which consisted of a P45 peptide and doxorubicin (Dox). P45 is a hybrid peptide composed of an Arg-Gly-Asp motif linked to the human matrilin-1 C-terminal domain by a serine linker. The fabricated nanospheres had a uniform mulberry-like spherical shape, a diameter of 63 nm, excellent polydispersity, and high Dox drug-loading efficiency.

View Article and Find Full Text PDF