Publications by authors named "Fengfei Xie"

Despite advancements in medical research, androgenetic alopecia (AGA) remains a humankind problem that still needs to be overcome. To date, clinical practice lacks an ideal treatment for AGA. The Wnt/β-catenin signaling pathway is evidenced to play a key role in hair regrowth, hence, modulating this signaling pathway for AGA therapy appears to be rational.

View Article and Find Full Text PDF

Pseudomonas aeruginosa (PA) is a leading cause of hospital-acquired and ventilator-associated pneumonia. The multidrug-resistance (MDR) rate of PA is increasing making the management of PA a global challenge. Messenger RNA (mRNA) vaccines represent the most promising alternative to conventional vaccines and are widely studied for viral infection and cancer immunotherapy while rarely studied for bacterial infections.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) are the commonly used delivery tools for messenger RNA (mRNA) therapy and play an indispensable role in the success of COVID-19 mRNA vaccines. Ionizable cationic lipids are the most important component in LNPs. Herein, we developed a series of new ionizable lipids featuring bioreducible disulfide bonds, and constructed a library of lipids derived from dimercaprol.

View Article and Find Full Text PDF

The aim of this study was to explore urine caffeine metabolites in relation to cognitive performance among 2011-2014 National Health and Nutrition Examination Survey participants aged ≥60 years. We hypothesized that urine caffeine metabolites were positively associated with cognition in older adults. Caffeine and 14 of its metabolites were quantified in urine by use of high-performance liquid chromatography-electrospray ionization-tandem quadruple mass spectrometry with stable isotope labeled internal standards.

View Article and Find Full Text PDF

Despite the availability of prevention and treatment strategies and advancing immunization approaches, the influenza virus remains a global threat that continues to plague humanity with unpredictable pandemics. Due to the unusual genetic variability and segmented genome, the reassortment between different strains of influenza is facilitated and the viruses continuously evolve and adapt to the host cell's immunity. This underlies the seasonal vaccine mismatches that decrease the vaccine efficacy and increase the risk of outbreaks.

View Article and Find Full Text PDF

Despite the existence of various types of vaccines and the involvement of the world's leading pharmaceutical companies, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains the most challenging health threat in this century. Along with the increased transmissibility, new strains continue to emerge leading to the need for more vaccines that would elicit protectiveness and safety against the new strains of the virus. Nucleic acid vaccines seem to be the most effective approach in case of a sudden outbreak of infection or the emergence of a new strain as it requires less time than any conventional vaccine development.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is undoubtedly the most challenging pandemic in the current century and remains a global health emergency. As the number of COVID-19 cases in the world is on the rise and variants continue to emerge, there is an urgent need for vaccines. Among all immunization approaches, mRNA vaccines have demonstrated more promising results in response to this challenge.

View Article and Find Full Text PDF

mRNA vaccines have become a promising alternative to conventional cancer immunotherapy approaches. However, its application on colorectal cancer (CRC) remains poorly understood. We herein identified potential antigens for designing an effective mRNA vaccine, further to build an immune landscape for the accurate selection of patients for mRNA vaccine therapy.

View Article and Find Full Text PDF

Androgenetic alopecia (AGA) remains an unsolved problem for the well-being of humankind, although multiple important involvements in hair growth have been discovered. Up until now, there is no ideal therapy in clinical practice in terms of efficacy and safety. Ultimately, there is a strong need for developing a feasible remedy for preventing and treating AGA.

View Article and Find Full Text PDF

Glioblastoma is one of the most lethal cancers and needs effective therapeutics. The development of coordination-driven metal-organic nanoassemblies, which can cross the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) and have multiple desired functions, may provide a promising solution to this issue. Here, we report an assembled nanoplatform based on RGD peptide-modified bisulfite-zinc-dipicolylamine-Arg-Gly-Asp (Bis(DPA-Zn)-RGD) and ultrasmall Au-ICG nanoparticles.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is one of the most common chronic autoimmune diseases. Although the progress made with current clinical use of biologic disease-modifying antirheumatic drugs (bioDMARDs), the response rate of RA treatment remains ungratified, primarily due to intricacy interactions of multiple inflammatory cytokines and the awkward drug delivery. Thus, it is of great importance to neutralize cytokines and actively deliver therapeutic agents to RA joints for the purpose of promoting in situ activity.

View Article and Find Full Text PDF

There exists an emergency clinical demand to overcome TRAIL/Apo2L (tumor necrosis factor-related apoptosis-inducing ligand) resistance, which is a major obstacle attributed to insufficient level or mutation of TRAIL receptors. Here, we developed an iron oxide cluster-based nanoplatform for both sensitization and MR image-guided evaluation to improve TRAIL/Apo2L efficacy in colorectal cancer, which has an inadequate response to TRAIL/Apo2L or chemotherapy. Specifically, NanoTRAIL (TRAIL/Apo2L-iron oxide nanoparticles) generated ROS (reactive oxygen species)-triggered JNK (c-Jun N-terminal kinase) activation and induced subsequent autophagy-assisted DR5 upregulation, resulting in a significant enhanced antitumor efficacy of TRAIL/Apo2L, which confirmed in both TRAIL-resistant HT-29, intermediately resistant SW-480 and sensitive HCT-116 cells.

View Article and Find Full Text PDF