Publications by authors named "Fengfan Zhou"

Motivation: The rise of single-cell RNA sequencing (scRNA-seq) technology presents new opportunities for constructing detailed cell type-specific gene regulatory networks (GRNs) to study cell heterogeneity. However, challenges caused by noises, technical errors, and dropout phenomena in scRNA-seq data pose significant obstacles to GRN inference, making the design of accurate GRN inference algorithms still essential. The recent growth of both single-cell and spatial transcriptomic sequencing data enables the development of supervised deep learning methods to infer GRNs on these diverse single-cell datasets.

View Article and Find Full Text PDF

Natural products play a key role in innovative drug discovery. To explore the potential application of natural products and their analogues in pharmacology, total synthesis is a key tool that provides natural product candidates and synthetic analogues for drug development and potential clinical trials. Deconstructive synthesis, namely building new, challenging structures through bond cleavage of easily accessible moieties, has emerged as a useful design principle in synthesizing bioactive natural products.

View Article and Find Full Text PDF

The first total syntheses of polycyclic diterpenes phomopsene (), methyl phomopsenonate (), and -phomopsene () have been accomplished through the unusual cascade reorganization of C-C single bonds. This approach features: (i) a synergistic Nazarov cyclization/double ring expansions in one-step, developed by authors, to rapid and stereospecific construction of the 5/5/5/5 tetraquinane scaffold bearing contiguous quaternary centers and (ii) a one-pot strategic ring expansion through Beckmann fragmentation/recombination to efficiently assemble the requisite 5/5/6/5 tetracyclic skeleton of the target molecules -. This work enables us to determine that the correct structure of -phomopsene is, in fact, the C7 epimer of the originally assigned structure.

View Article and Find Full Text PDF

Asymmetric hydrogenation of unsaturated morpholines has been developed by using a bisphosphine-rhodium catalyst bearing a large bite angle. With this approach, a variety of 2-substituted chiral morpholines could be obtained in quantitative yields and with excellent enantioselectivities (up to 99% ee). The hydrogenated products could be transformed into key intermediates for bioactive compounds.

View Article and Find Full Text PDF