Publications by authors named "Fengfan Lu"

The performance of two thermoluminescent dosimetry systems (RGD-3D and RE2000) manufactured in China and Finland was compared. Both of these dosimetry systems demonstrated satisfactory results as their performance met the requirements of the standard. The two dosimetry systems showed similar performance in the energy response.

View Article and Find Full Text PDF

The green water-based adsorption refrigeration is considered as a promising strategy to realize near-zero-carbon cooling applications. Although many metal-organic frameworks (MOFs) have been developed as water adsorbents, their cooling performance are commonly limited by the insufficient water uptakes below P/P = 0.2.

View Article and Find Full Text PDF

To address the challenges associated with the weak affinity and difficult separation of biochar, we developed chitosan-biochar hydrogel beads (CBHBs) as an efficient solution for removing reactive brilliant blue (RBB KN-R) from wastewater. The adsorption behavior and mechanism of RBB KN-R onto CBHBs were extensively studied. Notably, the adsorption capacity of RBB KN-R showed pH-dependence, and the highest adsorption capacity was observed at pH 2.

View Article and Find Full Text PDF

Developing efficient and stable water adsorbents for adsorption-driven heat transfer technology still remains a challenge due to the lack of efficient strategies to enhance low-pressure water uptakes. The authors herein demonstrate that the immobilization of Lewis basic nitrogen sites into metal-organic frameworks (MOFs) can improve water uptake and target benchmark coefficient of performances (COPs) for cooling and heating. They present the water sorption properties of a chemically stable MOF (termed as Zr-adip), designed by incorporating hydrophilic nitrogen sites into the adsorbent MIP-200.

View Article and Find Full Text PDF