Publications by authors named "Fengchun Ye"

Intestinal microbiota can coevolve with host to form symbiotic relationship and be participated in the regulation of host physiological function. At present, there is no clear explanation on the effect of intestinal microflora in Jiangxi aboriginal chickens. Here, we investigated the association between gut microbiota and host genome of Jiangxi local chickens using 16S rRNA sequencing and genome-wide association studies (GWAS).

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2, the virus responsible for COVID-19, produces various subgenomic RNAs (sgRNAs) that play roles in viral gene expression, though their functions are not entirely understood.
  • Host agents like insulin and interferon-gamma, along with the virus's spike protein, enhance the expression of these sgRNAs by promoting the binding of a specific host protein complex to the viral RNA's 3'-end.
  • A newly identified RNA element (SPEAR) in the virus's 3'-end increases sgRNA activity and viral translation, presenting a potential therapeutic target to reduce SARS-CoV-2 levels effectively.
View Article and Find Full Text PDF

The gut microbiota plays an important role in pig health and performance, particularly in host growth and fecundity. In present study, the characteristics and diversity of gut microbiota in fine purebred boars from three-way crossbred "Duroc×Landrace×Yorkshire" pigs were investigated using 16 S rRNA gene sequencing. The results showed that the three breeds of boars shared similar gut microbiota, yet there remain slight differences at the family/genus level.

View Article and Find Full Text PDF

Elevated serum cytokine production in COVID-19 patients is associated with disease progression and severity. However, the stimuli that initiate cytokine production in patients remain to be fully revealed. Virus-infected cells release virus-associated exosomes, extracellular vesicles of endocytic origin, into the blood to deliver viral cargoes able to regulate immune responses.

View Article and Find Full Text PDF

Despite potent suppression of HIV-1 viral replication in the central nervous system (CNS) by antiretroviral therapy (ART), between 15% and 60% of HIV-1-infected patients receiving ART exhibit neuroinflammation and symptoms of HIV-1-associated neurocognitive disorder (HAND) - a significant unmet challenge. We propose that the emergence of HIV-1 from latency in microglia underlies both neuroinflammation in the CNS and the progression of HAND. Recent molecular studies of cellular silencing mechanisms of HIV-1 in microglia show that HIV-1 latency can be reversed both by proinflammatory cytokines and by signals from damaged neurons, potentially creating intermittent cycles of HIV-1 reactivation and silencing in the brain.

View Article and Find Full Text PDF

Human immune deficiency virus (HIV) infection in the brain leads to chronic neuroinflammation due to the production of pro-inflammatory cytokines, which in turn promotes HIV transcription in infected microglial cells. However, powerful counteracting silencing mechanisms in microglial cells result in the rapid shutdown of HIV expression after viral reactivation to limit neuronal damage. Here we investigated whether the Nerve Growth Factor IB-like nuclear receptor Nurr1 (NR4A2), which is a repressor of inflammation in the brain, acts directly to restrict HIV expression.

View Article and Find Full Text PDF

HIV-1 infects lymphoid and myeloid cells, which can harbor a latent proviral reservoir responsible for maintaining lifelong infection. Glycolytic metabolism has been identified as a determinant of susceptibility to HIV-1 infection, but its role in the development and maintenance of HIV-1 latency has not been elucidated. By combining transcriptomic, proteomic, and metabolomic analyses, we here show that transition to latent HIV-1 infection downregulates glycolysis, while viral reactivation by conventional stimuli reverts this effect.

View Article and Find Full Text PDF

Purslane is a widespread wild vegetable with both medicinal and edible properties. It is highly appreciated for its high nutritional value and is also considered as a high-quality feed resource for livestock and poultry. In this study, Sanhuang broilers were used to investigate the effect of feeding purslane diets on the growth performance in broilers and their gut microbiota.

View Article and Find Full Text PDF

Angiopoietin/tyrosine protein kinase receptor Tie-2 signaling in endothelial cells plays an essential role in angiogenesis and wound healing. Angiopoietin-1 (Ang-1) is crucial for blood vessel maturation while angiopoietin-2 (Ang-2), in collaboration with vascular endothelial growth factor (VEGF), initiates angiogenesis by destabilizing existing blood vessels. In healthy people, the Ang-1 level is sustained while Ang-2 expression is restricted.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causal agent for Kaposi's sarcoma (KS), the most common malignancy in people living with human immunodeficiency virus (HIV)/AIDS. The oral cavity is a major route for KSHV infection and transmission. However, how KSHV breaches the oral epithelial barrier for spreading to the body is not clear.

View Article and Find Full Text PDF

Despite effective antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are found in nearly one-third of patients. Using a cellular co-culture system including neurons and human microglia infected with HIV (hμglia/HIV), we investigated the hypothesis that HIV-dependent neurological degeneration results from the periodic emergence of HIV from latency within microglial cells in response to neuronal damage or inflammatory signals. When a clonal hμglia/HIV population (HC69) expressing HIV, or HIV infected human primary and iPSC-derived microglial cells, were cultured for a short-term (24 h) with healthy neurons, HIV was silenced.

View Article and Find Full Text PDF

We have developed models of HIV latency using microglia derived from adult human patient brain cortex and transformed with the SV40 T large and hTERT antigens. Latent clones infected by HIV reporter viruses display high levels of spontaneous HIV reactivation in culture. BrainPhys, a medium highly representative of the CNS extracellular environment, containing low glucose and 1% FBS, reduced, but did not prevent, HIV reactivation.

View Article and Find Full Text PDF

While T helper (Th) cells play a crucial role in host defense, an imbalance in Th effector subsets due to dysregulation in their differentiation and expansion contribute to inflammatory disorders. Here, we show that Casz1, whose function is previously unknown in CD4 T cells, coordinates Th differentiation and . Casz1 deficiency in CD4 T cells lowers susceptibility to experimental autoimmune encephalomyelitis, consistent with the reduced frequency of Th17 cells, despite an increase in Th1 cells in mice.

View Article and Find Full Text PDF

Latency is a hallmark of all herpesviruses, during which the viral genomes are silenced through DNA methylation and suppressive histone modifications. When latent herpesviruses reactivate to undergo productive lytic replication, the suppressive epigenetic marks are replaced with active ones to allow for transcription of viral genes. Interestingly, by using Kaposi's sarcoma-associated herpesvirus (KSHV) as a model, we recently demonstrated that the newly transcribed viral RNAs are also subjected to post-transcriptional N-adenosine methylation (mA).

View Article and Find Full Text PDF

Tumor associated macrophages (TAMs) promote angiogenesis, tumor invasion and metastasis, and suppression of anti-tumor immunity. These myeloid cells originate from monocytes, which differentiate into TAMs upon exposure to the local tumor microenvironment. We previously reported that Kaposi's sarcoma-associated herpes virus (KSHV) infection of endothelial cells induces the cytokine angiopoietin-2 (Ang-2) to promote migration of monocytes into tumors.

View Article and Find Full Text PDF

N-adenosine methylation (mA) is the most common posttranscriptional RNA modification in mammalian cells. We found that most transcripts encoded by the Kaposi's sarcoma-associated herpesvirus (KSHV) genome undergo mA modification. The levels of mA-modified mRNAs increased substantially upon stimulation for lytic replication.

View Article and Find Full Text PDF

A high prevalence of Kaposi's sarcoma (KS) is seen in diabetic patients. It is unknown if the physiological conditions of diabetes contribute to KS development. We found elevated levels of viral lytic gene expression when Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells were cultured in high-glucose medium.

View Article and Find Full Text PDF

Kaposi's sarcoma (KS) is a highly angiogenic and inflammatory neoplasia. The angiogenic and inflammatory cytokine angiopoietin-2 (Ang-2) is strongly expressed in KS due to Kaposi's sarcoma-associated herpesvirus (KSHV) infection. In the present study, we determined how Ang-2 contributes to development of KS by using telomerase-immortalized human umbilical vein endothelial cells (TIVE) as a model, which become malignantly transformed and express increased levels of Ang-2 following KSHV infection.

View Article and Find Full Text PDF

Post-transcriptional m(6)A methylation of RNA has profound effects on RNA splicing, export, stability, and translation. A recent study by Lichinchi et al. (2016) and one in this issue of Cell Host & Microbe by Kennedy et al.

View Article and Find Full Text PDF

The genomes of herpesviruses and HIV become silent during latency through multiple chromatin silencing mechanisms including: histone deacetylation, repressive histone methylation, and DNA methylation. Reactivation of the latent virus requires removal of the chromatin silencing marks and their replacement by activating modifications such as histone acetylation and activating histone methylation. In a complementary mechanism, RNA Polymerase II (RNAP II) elongation is regulated by the positive transcription elongation factor b (P-TEFb)-dependent phosphorylation of Ser2 residues on its C-terminal domain.

View Article and Find Full Text PDF

HIV patients with severe periodontitis have high levels of residual virus in their saliva and plasma despite effective therapy (HAART). Multiple short chain fatty acids (SCFAs) from periodontal pathogens reactivate HIV-1 in both Jurkat and primary T-cell models of latency. SCFAs not only activate positive transcription elongation factor b (P-TEFb), which is an essential cellular cofactor for Tat, but can also reverse chromatin blocks by inducing histone modifications.

View Article and Find Full Text PDF

Unlabelled: Kaposi's sarcoma-associated herpesvirus (KSHV) establishes persistent latent infection in immunocompetent hosts. Disruption of KSHV latency results in viral lytic replication, which promotes the development of KSHV-related malignancies in immunocompromised individuals. While inhibitors of classes I and II histone deacetylases (HDACs) potently reactivate KSHV from latency, the role of class III HDAC sirtuins (SIRTs) in KSHV latency remains unclear.

View Article and Find Full Text PDF

Unlabelled: Periodontal pathogens such as Porphyromonas gingivalis and Fusobacterium nucleatum produce five different short-chain fatty acids (SCFAs) as metabolic by-products. We detect significantly higher levels of SCFAs in the saliva of patients with severe periodontal disease. The different SCFAs stimulate lytic gene expression of Kaposi's sarcoma-associated herpesvirus (KSHV) dose dependently and synergistically.

View Article and Find Full Text PDF

Kaposi sarcoma-associated herpesvirus (KSHV) is a tumor virus encoding several proto-oncogenes. However, the roles of these viral genes in KSHV-induced tumorigenesis have not been defined. In this study, we used a recently developed model of KSHV-induced cellular transformation and tumorigenesis combining with a reverse genetic system to examine the role of a KSHV latent gene vCyclin (ORF72), a cellular Cyclin D2 homolog, in KSHV-induced oncogenesis.

View Article and Find Full Text PDF