Publications by authors named "Fengbo Yan"

Architectures based on a magnetic domain wall (DW) can store and process information at a high speed in a nonvolatile manner with ultra-low power consumption. Recently, transition-metal rare earth metal alloy-based ferrimagnets have attracted a considerable amount of attention for the ultrafast current-driven DW motion. However, the high-speed DW motion is subject to film inhomogeneity and device edge defects, causing challenges in controlling the DW motion and hindering practical application.

View Article and Find Full Text PDF

Although rare-earth nickelates (ReNiO, Re ≠ La) exhibit abundant electronic phases and widely adjustable metal to insulator electronic transition properties, their practical electronic applications are largely impeded by their intrinsic meta-stability. Apart from elevating the oxygen reaction pressure, heterogeneous nucleation is expected to be an alternative strategy that enables the crystallization of ReNiO at low meta-stability. In this work, the respective roles of high oxygen pressure and heterogeneous interface in triggering ReNiO thin film growth in the metastable state are revealed.

View Article and Find Full Text PDF

The discovery of hydrogen-induced electron localization and highly insulating states in d-band electron correlated perovskites has opened a new paradigm for exploring novel electronic phases of condensed matters and applications in emerging field-controlled electronic devices (e.g., Mottronics).

View Article and Find Full Text PDF

In this work, the crystal growth kinetics of ZnS nanoparticles coarsened under 100 degrees C with NaOH concentration from 2 to 8 M was investigated, aiming to study the role of NaOH concentration on the oriented attachment growth kinetics. It reveals that 2 M NaOH is sufficient to lead to two-stage growth kinetics of ZnS nanoparticles, resulting in pure and multistep oriented attachment growth characteristics in the first stage. When the NaOH concentration increases, the rate of crystal growth by oriented attachment mechanism increases, while the time period for crystal growth at the pure oriented attachment stage was similar.

View Article and Find Full Text PDF