Publications by authors named "Fengbo Wang"

Architecting Prussian blue analogue (PBA) cathodes with optimized synergistic bimetallic reaction centers is a paradigmatic strategy for devising high-energy sodium-ion batteries (SIBs); however, these cathodes usually suffer from fast capacity fading and sluggish reaction kinetics. To alleviate the above problems, herein, a series of early transition metal (ETM)-late transition metal (LTM)-based PBA (Fe-VO, Fe-TiO, Fe-ZrO, Co-VO, and Fe-Co-VO) cathode materials have been conveniently fabricated via an "acid-assisted synthesis" strategy. As a paradigm, the FeVO-PBA (FV) delivers a superb rate capability (148.

View Article and Find Full Text PDF

Objective: Pancreatic cancer is characterized by low survival rate and rapid deterioration. Methyltransferase-like 14 (METTL14), as N6-methyladenosine (m6A) methyltransferase, is closely related to tumor progression. The purpose of this study is to look into how METTL14 affects pancreatic cancer tumorigenesis, cell division, and apoptosis.

View Article and Find Full Text PDF

Room temperature sodium-sulfur batteries (RT Na-S) have garnered significant attention for their high energy density and cost-effectiveness, positioning them as a promising alternative to lithium-ion batteries. However, they encounter challenges such as the dissolution of sodium polysulfides and sluggish kinetics. Introducing high-activity electrocatalysts and enhancing the density of active sites represents an efficient strategy to enhance reaction kinetics.

View Article and Find Full Text PDF

Domoic acid (DA) is a compound generated as a secondary metabolite during harmful algal blooms, has historically received attention as the potent neurotoxicity in marine environment. However, the aerobic degradation mechanism of DA and the DA-degrader remain largely unknown. Here, we revealed the mechanism of aerobic degradation of DA by a ubiquitous marine Pseudoalteromonas sp.

View Article and Find Full Text PDF

2D transitional metal selenide heterostructures are promising electrode materials for potassium-ion batteries (PIBs) owing to the large surface area, high mechanical strength, and short diffusion pathways. However, the cycling performance remains a significant challenge, particularly concerning the electrochemical conversion reaction. Herein, 2D Se-rich ZnSe/CoSe@C heterostructured composite is fabricated via a convenient hydrothermal approach followed by selenization process, and then applied as high-performance anodes for PIBs.

View Article and Find Full Text PDF

Conversion and alloying-type transitional metal sulfides have attracted significant interests as anodes for Potassium-ion batteries (PIBs) and Sodium-ion batteries (SIBs) due to their high theoretical capacities and low cost. However, the poor conductivity, structural pulverization, and high-volume expansions greatly limit the performance. Herein, CoS/ZnS hollow nanocube-like heterostructure decorated on reduced graphene oxide (CoS/ZnS@rGO) composite is fabricated through convenient hydrothermal and post-heat vulcanization techniques.

View Article and Find Full Text PDF

Anionic chemistry modulation represents a promising avenue to enhance the electrochemical performance and unlock versatile applications in cutting-edge energy storage devices. Herein, we propose a methodology that involves anionic chemistry of carbonate anions to tailor the electrochemical oxidation-reduction reactions of bismuth (Bi) electrodes, where the conversion energy barrier for Bi (0) to Bi (III) has been significantly reduced, endowing anionic full batteries with enhanced electrochemical kinetics and chemical self-charging property. The elaborately designed batteries with an air-switch demonstrate rapid self-recharging capabilities, recovering over 80 % of the electrochemical full charging capacity within a remarkably short timeframe of 1 hour and achieving a cumulative self-charging capacity of 5 Ah g.

View Article and Find Full Text PDF

The catalytic process of LiS formation is considered a key pathway to enhance the kinetics of lithium-sulfur batteries. Due to the system's complexity, the catalytic behavior is uncertain, posing significant challenges for predicting activity. Herein, we report a novel cascaded dual-cavity nanoreactor (NiCo-B) by controlling reaction kinetics, providing an opportunity for achieving hierarchical catalytic behavior.

View Article and Find Full Text PDF

Objectives: Triple-negative breast cancer (TNBC) is characterized by significant heterogeneity, presenting a formidable challenge with a poor prognosis and a deficiency of efficacious treatment options.

Methods: In this comprehensive study, we investigated the multifaceted role of Microfibril-associated glycoprotein 2 (MFAP2) in TNBC using a combination of bioinformatics analysis involving Gene Expression Omnibus (GEO), OncoDB, UALCAN, Human Protein Atlas (HPA), TIMER, STRING, DAVID, and GSCA databases and in vitro experiments, such as cell culture, MFAP2 gene knockdown, RT-qPCR, western Blot, colony formation, Cell counting kit-8, and wound healing assays.

Results: Our findings demonstrated a significant up-regulation of MFAP2 mRNA in TNBC cell lines, emphasizing its potential as a diagnostic biomarker.

View Article and Find Full Text PDF

Objective: The primary aim of this research is to investigate the predictive value of subdural effusion thickness in determining the progression of post-traumatic subdural effusion to chronic subdural hematoma. Studying this progression is crucial as it helps in early diagnosis and effective management of chronic subdural hematoma, which is a serious and life-threatening condition. This research is valuable and relevant for improving patient outcomes and reducing the associated risks and complications.

View Article and Find Full Text PDF

Background: This study aimed to investigate the specific roles of the long non-coding RNA (lncRNA) proteasome 20S subunit beta 8 (PSMB8)-antisense RNA 1 (AS1)/microRNA (miR)-382-3p/branched-chain amino acid transaminase 1 (BCAT1) interaction network in gliomas.

Methods: Western blotting and quantitative reverse transcription-polymerase chain reaction were performed to assess the expression levels of lncRNA PSMB8-AS1, BCAT1, and miR-382-3p. Moreover, the cell proliferation, migration, and apoptosis were assessed using the cell counting kit-8, Transwell, and caspase-3 activity assays, respectively.

View Article and Find Full Text PDF

Sluggish sulfur redox kinetics and Li-dendrite growth are the main bottlenecks for lithium-sulfur (Li-S) batteries. Separator modification serves as a dual-purpose approach to address both of these challenges. In this study, the Co/MoN composite is rationally designed and applied as the modifier to modulate the electrochemical kinetics on both sides of the sulfur cathode and lithium anode.

View Article and Find Full Text PDF

MnO has the advantages of low cost and abundant resources, so it is considered to be an important electrode material in zinc ion batteries. However, its practical application is still challenged by easy collapse and capacity loss. In this paper, a stable single crystal β-MnO nanorod cathode material was prepared.

View Article and Find Full Text PDF

Benefiting from the admirable energy density (1086 Wh kg ), overwhelming security, and low environmental impact, rechargeable zinc-air batteries (ZABs) are deemed to be attractive candidates for lithium-ion batteries. The exploration of novel oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional catalysts is the key to promoting the development of zinc-air batteries. Transitional metal phosphides (TMPs) especially Fe-based TMPs are deemed to be a rational type of catalyst, however, their catalytic performance still needs to be further improved.

View Article and Find Full Text PDF

Developing a conductive catalyst with high catalytic activity is considered to be an effective strategy for improving cathode kinetics of lithium-sulfur batteries, especially at large current density and with lean electrolytes. Lattice-strain engineering has been a strategy to tune the local structure of catalysts and to help understand the structure-activity relationship between strain and catalyst performance. Here, Co Zn Te @NC is constructed after zinc atoms are uniformly doped into the CoTe lattice.

View Article and Find Full Text PDF

Background: Intraventricular hemorrhage is a neurosurgical emergency, and a dangerous condition associated with high morbidity and mortality. Previously, hematoma evacuation is generally executed by external intracranial drainage (EVD) or surgical evacuation. Nowadays, endoscopic evacuation is emerging as a good alternative because it brings relatively less invasion and injury.

View Article and Find Full Text PDF

Circular RNA takes a crucial part in carcinogenesis. Circ_0058063 has been found to act as an oncogene in esophageal cancer and bladder cancer, but its role in thyroid cancer (TC) is still under investigation. Therefore, we carried out a study to understand its role in TC and its association with miR-330-3p.

View Article and Find Full Text PDF

Metal sulfides are promising anodes for potassium-ion batteries (PIBs) due to their high theoretical capacity and abundant active sites; however, their intrinsic low conductivity and poor cycling stability hampered their practical applications. Given this, the rational design of hybrid structures with high stability and fast charge transfer is a critical approach. Herein, CoS/ZnS@rGO hybrid nanocomposites were demonstrated with stable cubic phases.

View Article and Find Full Text PDF

Suitable anode materials with high capacity and long cycling stability, especially capability at high current densities, are urgently needed to advance the development of potassium ion batteries (PIBs) and sodium ion batteries (SIBs). Herein, a porous Ni-doped FeSe /Fe Se heterojunction encapsulated in Se-doped carbon (NF S/C) is designed through selenization of MOFs precursor. The porous composite possesses enriched active sites and facilitates transport for both ion and electron.

View Article and Find Full Text PDF

Background: Hepatoma is a leading cause of death worldwide, with high metastasis and recurrence rates. The aberrant expression of miRNA-130a-5p is involved in the development and progression of various cancers. However, there are no studies investigating the role of miRNA-130a-5p in hepatoma.

View Article and Find Full Text PDF

Naphthenic acids (NAs) are a persistent toxic organic pollutant that occur in different environment worldwide and cause serious threat to the ecosystem and public health. However, knowledge on the behavior and fate of NAs in marine environments still remains unknown. In this study, the degradation mechanism of NAs (cyclohexylacetic acid, CHAA) was investigated using an common indigenous marine Pseudoalteromonas sp.

View Article and Find Full Text PDF

Exosomes are a heterogeneous group of nano-sized natural membrane vesicles released from various cells and exist in body fluids. Different from the previous understanding of the function of exosomes as "garbage bins", exosomes act as carriers with many kinds of bioactive molecules (e.g.

View Article and Find Full Text PDF

Domoic acid (DA) is a major marine neurotoxin, occurs frequently in most of the world's coastlines and seriously threatens ecosystem and public health. However, information on its biotransformation process in coastal anaerobic environments remains unclear. In this study, the underlying mechanism of anaerobic biotransformation of DA by marine consortium GLY was investigated using the combination of liquid chromatography-high-resolution Orbitrap mass spectrometry and comparative metatranscriptomics analysis.

View Article and Find Full Text PDF

Polyacrylate containing wastewater (PCW) is the typical sewage discharged by the textile industry. It has extremely poor biodegradability, and chemical methods were used conventionally as the only way for treating PCW. This study is demonstrating a novel biological method.

View Article and Find Full Text PDF