Publications by authors named "Feng-Shou Chen"

Spinal cord ischemia/reperfusion injury (SCII) is a severe complication driven by apoptosis and neuroinflammation. An increase in the expression of c-Fos, a member of the AP-1 family, is known as a neuronal activation marker in SCII. The AP-1 family is composed of Jun, Fos, and is associated with the regulation of cytokines expression and apoptosis.

View Article and Find Full Text PDF

Spinal cord ischemia/reperfusion injury is a devastating medical disorder with poor prognosis that is associated with several pathophysiological conditions. However, multiple stimuli can trigger SCII, so the underlying mechanism of this pathology has not yet been fully established. MicroRNAs (miRNAs) are a class of non-coding RNAs that mediate a variety of nervous system diseases and regulate numerous physiological functions, including apoptosis, autophagy, inflammation, and blood-spinal cord barrier damage.

View Article and Find Full Text PDF

miR-101a-3p is expressed in a variety of organs and tissues and plays a regulatory role in many diseases, but its role in spinal cord ischemia/reperfusion injury remains unclear. In this study, we established a rat model of spinal cord ischemia/reperfusion injury by clamping the aortic arch for 14 minutes followed by reperfusion for 24 hours. Results showed that miR-101a-3p expression in L4-L6 spinal cord was greatly decreased, whereas MYCN expression was greatly increased.

View Article and Find Full Text PDF

Background: Liver cancer ranks the top four malignant cancer type worldwide, which needs effective and safe treatment. Ferroptosis is a novel form of regulated cell death driven by iron-dependent lipid peroxidation and has been regarded as a promising therapeutic target for cancers. In this work, we aimed to study the effects of anesthetic ketamine on proliferation and ferroptosis of liver cancer.

View Article and Find Full Text PDF

Recent evidence suggests that hypoxia preconditioning can alter the microRNA (miRNA) profile of extracellular vesicles (EVs) and has better neuroprotective effects when enriched miRs are delivered to recipients. However, the roles of exosomal miRNAs in regulating ischaemia-reperfusion (IR)-induced pain hypersensitivity are largely unknown. Thus, we isolated EVs from normoxia-conditioned neurons (Nor-VSC EVs) and Hypo-VSC EVs by ultracentrifugation.

View Article and Find Full Text PDF

Background: Ischaemia reperfusion (IR) induces multiple pathophysiological changes. In addition to its classical role in regulating tumourigenesis, the feedback loop formed by p53 and its driven target p53-upregulated modulator of apoptosis (PUMA) was recently demonstrated to be the common node tightly controlling various cellular responses during myocardial IR. However, the roles of the p53-PUMA feedback loop in the spinal cord remain unclear.

View Article and Find Full Text PDF

Background: Ischemia-reperfusion (IR) affects microRNA (miR) expression and causes substantial inflammation. Multiple roles of the tumor suppressor miR-129-5p in cerebral IR have recently been reported, but its functions in the spinal cord are unclear. Here, we investigated the role of miR-129-5p after spinal cord IR, particularly in regulating high-mobility group box-1 (HMGB1) and the Toll-like receptor (TLR)-3 pathway.

View Article and Find Full Text PDF

Autophagy plays an important role in spinal cord ischemia reperfusion (I/R) injury, but its neuroprotective or neurodegenerative role remains controversial. The extent and persistence of autophagy activation may be the critical factor to explain the opposing effects. In this study, the different roles and action mechanisms of autophagy in the early and later stages after I/R injury were investigated in rats.

View Article and Find Full Text PDF