Deep eutectic solvents (DESs) have attracted an increasing attention in the fields of biocatalysis and biopolymer processing. In this study, papain immobilized on choline chloride- lactic acid (ChCl-Lac) DES-treated chitosan exhibited excellent thermostability as compared to the free enzyme. The properties of native or DES-treated chitosan and immobilized enzyme were characterized by FT-IR, SEM, surface area and pore property analysis.
View Article and Find Full Text PDFA two-stage deep eutectic solvents (DESs) treatment was shown to be an effective method for improving the utilization of certain DESs, and the specific order of pretreatment, such as malic acid/proline (MP) or choline chloride/oxalic acid (CO) during the first stage and choline chloride/urea (CU) during the second stage, resulted in better performance for enhancing the sugar yield due to the synergistic effect of the two DESs on biomass fractionation. Moreover, the presence of water during these processes could balance the loss of components by tuning the pretreatment severity, thus ensuring higher sugar yields. By eliminating the washing step after the first stage treatment, enhanced cellulose recovery and glucose yield were achieved for the CO-CU pretreatment in the presence of 5% water, and a simpler process was established with a glucose yield of 90.
View Article and Find Full Text PDFBackground: The spleen is thought to be central in regulating the immune system, a metabolic asset involved in endocrine function. Overwhelming postsplenectomy infection leads to a mortality rate of up to 50%. However, there is still controversy on performing subtotal splenectomy as treatment of splenomegaly due to portal hypertension in cirrhotic patients.
View Article and Find Full Text PDF