Publications by authors named "Feng-Chao Cui"

Aqueous zinc-iodine batteries (AZIBs) are attracting increasing attention because of their high safety and abundance of resources. However, the performance of AZIBs is compromised by inadequate confinement of soluble polyiodides, the undesired shuttle effect, and slow reaction kinetics. In this study, a porous aromatic framework (PAF) with abundant benzene motifs and a well-organized pore structure is adopted as the iodine host, which exhibits high iodine adsorption capacity and robust polyiodide confinement.

View Article and Find Full Text PDF

It is highly desirable to reduce the environmental pollution related to the disposal of end-of-life plastics. Polycarbonates derived from the copolymerization of CO and epoxides have attracted much attention since they can enable CO-fixation and furnish biorenewable and degradable polymeric materials. So far, only linear CO-based polycarbonates have been reported and typically degraded to cyclic carbonates.

View Article and Find Full Text PDF

In this study, using dissipative particle dynamics simulations coupled with the stochastic reaction model, we investigate the polymerization-induced polymer aggregation process and the polymer aggregation-enhanced polymerization process in a binary solution, by simply tuning the solubility of the solvent to one species of copolymerization. Our simulations indicate that it is a complicated interplay of the copolymerization on the formation of aggregates, namely, on one hand the polymerization may induce the aggregation of one species; on the other hand it has an effect of mixing the two species together. We also find that the polymerization process basically follows the first order reaction kinetics.

View Article and Find Full Text PDF

By Brownian dynamics simulations we study the simultaneous polymer chain growth process with the coexistence of bulk and surface initiators. We find that when the surface initiator density is low enough, the practical experimental way to estimate the dispersity (Đ) of surface-initiated chains on the basis of the dispersity of bulk-initiated chains remains valid as long as the conformations of grafted chains remain within the mushroom regime (i.e.

View Article and Find Full Text PDF

Aliphatic aldoxime dehydratase (Oxd) catalyzes the dehydration of aliphatic aldoximes (R-CH═N-OH) to the corresponding nitriles (R-C≡N). Quantum mechanics/molecular mechanics (QM/MM) calculations are performed to elucidate the catalytic mechanism of the enzyme on the basis of the X-ray crystal structure of the Michaelis complex. On the basis of the calculations, we propose a complete catalytic cycle of Oxd in which the distal histidine (His320) acts as a general acid/base.

View Article and Find Full Text PDF

The mechanism of the methyl transfer catalyzed by chalcone O-methyltransferase has been computationally investigated by employing the hybrid functional B3LYP. Two models are constructed based on the two conformations of the substrate isoliquiritigenin in the X-ray structure. Our calculations show that the overall reaction is divided into two elementary steps: the water-assisted deprotonation of the substrate by His278 as a catalytic base, followed by the methyl transfer from S-adenosyl-L-methionine (SAM) to the substrate.

View Article and Find Full Text PDF

Quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations were performed to investigate the methylation of 6-mercaptopurine catalyzed by thiopurine S-methyltransferase. Several setups with different tautomeric forms and orientations of the substrate were considered. It is found that, with the orientation in chain A of the X-ray structure, the substrate can form an ideal near-attack configuration for the methylation reaction, which may take place after the deprotonation of the substrate by the conserved residue Asp23 through a water chain.

View Article and Find Full Text PDF

Density functional theory (DFT) calculations using the hybrid functional B3LYP have been performed to investigate the catalytic mechanism of hydroxynitrile lyase from Hevea brasiliensis (Hb-HNL). This enzyme catalyzes the cleavage of acetone cyanohydrin to hydrocyanic acid plus acetone. Two models (A and B) of the active site consisting of 105 and 155 atoms, respectively, were constructed on the basis of the crystal structure.

View Article and Find Full Text PDF