Publications by authors named "Feng Lai Yuan"

In most cases of bone metabolic disorders, such as osteoporosis and osteomalacia, these conditions are often attributed to dysfunctional osteoclasts, leading to their common characterization as "destructors." In addition to the widely documented regulatory process where osteoblasts direct osteoclastic bone resorption, there is increasing evidence suggesting that osteoclasts also in turn influence osteoblastic bone formation through direct and indirect mechanisms. It is well-known that differentiation of osteoclasts involves several stages, each characterized by specific cellular features and functions.

View Article and Find Full Text PDF

Wound regeneration with integral function and cutaneous appendages remains challenging in wound dressing applications. Cellulose nanofibers (CNF) exhibit remarkable characteristics in wound dressing applications; however, their utility in the wound healing process is limited by insufficient scar inhibition and regenerative healing. Herein, inspired by fibroblast heterogeneity mediating wound healing and skin regeneration, we developed a CNF scaffold designed to block Dipeptidyl Peptidase 4 positive (DPP4) fibroblasts for regenerative healing.

View Article and Find Full Text PDF

The drug response phenotype is determined by a combination of genetic and environmental factors. The high clinical conversion failure rate of gene-targeted drugs might be attributed to the lack of emphasis on environmental factors and the inherent individual variability in drug response (IVDR). Current evidence suggests that environmental variables, rather than the disease itself, are the primary determinants of both gut microbiota composition and drug metabolism.

View Article and Find Full Text PDF

Acid-sensing ion channel 1a (ASIC1a), a prominent member of the acid-sensing ion channel (ASIC) superfamily activated by extracellular protons, is ubiquitously expressed throughout the human body, including the nervous system and peripheral tissues. Excessive accumulation of Ca ions via ASIC1a activation may occur in the acidified microenvironment of blood or local tissues. ASIC1a-mediated Ca‑induced apoptosis has been implicated in numerous pathologies, including neurological disorders, cancer, and rheumatoid arthritis.

View Article and Find Full Text PDF

Bone targeted delivery of estrogen offers great promise for the clinical application of estrogen in the treatment of postmenopausal osteoporosis (PMOP). However, the current bone-targeted drug delivery system still has several issues that need to be solved, such as the side effects of bone-targeted modifier molecules and the failure of the delivery system to release rapidly in the bone tissue. It is important to aggressively search for new bone-targeted modifier molecules and bone microenvironment-responsive delivery vehicles.

View Article and Find Full Text PDF

The remodeling of actin cytoskeleton of osteoclasts on the bone matrix is essential for osteoclastic resorption activity. A specific regulator of the osteoclast cytoskeleton, integrin αβ, is known to provide a key role in the degradation of mineralized bone matrixes. Cilengitide is a potent inhibitor of integrins and is capable of affecting αβ receptors, and has anti-tumor and anti-angiogenic and apoptosis-inducing effects.

View Article and Find Full Text PDF
Article Synopsis
  • Cuprotosis is a new type of programmed cell death linked to cancer, and its role in gastric cancer (GC) is currently being explored.
  • Researchers analyzed data from 1544 GC patients, identifying three distinct molecular genotypes: Cluster A (best outcomes, metabolic pathway enrichment), Cluster B (high immune activation), and Cluster C (immunosuppressed with poor immunotherapy response).
  • The study also developed a scoring system for cuprotosis that can predict patient survival and immune responses, highlighting new potential targets for immunotherapy in GC patients.
View Article and Find Full Text PDF

With increasing age, bone tissue undergoes significant alterations in composition, architecture, and metabolic functions, probably causing senile osteoporosis. Osteoporosis possess the vast majority of bone disease and associates with a reduction in bone mass and increased fracture risk. Bone loss is on account of the disorder in osteoblast-induced bone formation and osteoclast-induced bone resorption.

View Article and Find Full Text PDF

Wound healing is a complex and error-prone process. Wound healing in adults often leads to the formation of scars, a type of fibrotic tissue that lacks skin appendages. Hypertrophic scars and keloids can also form when the wound-healing process goes wrong.

View Article and Find Full Text PDF

The circadian clock regulates many key physiological processes such as the sleep-wake cycle, hormone release, cardiovascular health, glucose metabolism and body temperature. Recent evidence has suggested a critical role of the circadian system in controlling bone metabolism. Here we review the connection between bone metabolism and the biological clock, and the roles of these mechanisms in bone loss.

View Article and Find Full Text PDF

Objective: The aim of the study was to propose a signature based on genes associated with antigen processing and presentation (APscore) to predict prognosis and response to immune checkpoint inhibitors (ICIs) in advanced gastric cancer (aGC).

Background: How antigen presentation-related genes affected the immunotherapy response and whether they could predict the clinical outcomes of the immune checkpoint inhibitor (ICI) in aGC remain largely unknown.

Methods: In this study, an aGC cohort (Kim cohort, RNAseq, N=45) treated by ICIs, and 467 aGC patients from seven cohorts were conducted to investigate the value of the APscore predicting the prognosis and response to ICIs.

View Article and Find Full Text PDF

Resveratrol (RSV) is a natural extract that has been extensively studied for its significant anti-inflammatory and antioxidant effects, which are closely associated with a variety of injurious diseases and even cosmetic medicine. In this review, we have researched and summarized the role of resveratrol and its different forms of action in wound healing, exploring its role and mechanisms in promoting wound healing through different modes of action such as hydrogels, fibrous scaffolds and parallel ratio medical devices with their anti-inflammatory, antioxidant, antibacterial and anti-ageing properties and functions in various cells that may play a role in wound healing. This will provide a direction for further understanding of the mechanism of action of resveratrol in wound healing for future research.

View Article and Find Full Text PDF

Disturbances or defects in the process of wound repair can disrupt the delicate balance of cells and molecules necessary for complete wound healing, thus leading to chronic wounds or fibrotic scars. Myofibroblasts are one of the most important cells involved in fibrotic scars, and reprogramming provides a potential avenue to increase myofibroblast clearance. Although myofibroblasts have long been recognized as terminally differentiated cells, recent studies have shown that myofibroblasts have the capacity to be reprogrammed into adipocytes.

View Article and Find Full Text PDF

Bone morphogenetic protein (BMP) pathway is essential for M2 macrophage polarization and hair-follicle neogenesis. Icariin, a flavonoid derived from , is a mediator of the BMP pathway. Here, we develop a hydrogel formulation functionalized with icariin for regulation of macrophage polarization to accelerate wound healing and hair-follicle neogenesis.

View Article and Find Full Text PDF

Inflammation is one of the main pathological features leading to skin fibrosis and a key factor leading to the progression of skin fibrosis. Acidosis caused by a decrease in extracellular pH is a sign of the inflammatory process. Acid-sensing ion channels (ASICs) are ligand-gated ion channels on the cell membrane that sense the drop in extracellular pH.

View Article and Find Full Text PDF

Wound healing is a complex and long-term process consisting of hemostasis, inflammation, proliferation, and maturation/remodeling. These four stages overlap and influence each other; they affect wound healing in different ways, and if they do not function perfectly, they may cause scarring, proliferative scarring and keloid formation. A therapeutic target affecting wound healing in multiple ways will help the healing process proceed more effectively.

View Article and Find Full Text PDF

Oral bisphosphonates (BPs) are a first-line treatment for osteoporosis. It is becoming a hot topic to identify new indicators for the early prediction of therapeutic effects and adverse reactions during the long-term use of BPs. To determine whether microRNA (miRNA) expression is modulated by long-term BPs treatment, we performed miRNA expression profiling analysis in patients receiving long-term BP treatment for postmenopausal OP.

View Article and Find Full Text PDF

Skin fibrosis is a common pathological feature of various diseases, and few treatment strategies are available because of the molecular pathogenesis is poorly understood. The urokinase-type plasminogen activator (uPA) system is the major serine protease system, and its components uPA, urokinase plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1(PAI-1) are widely upregulated in fibrotic diseases, including hypertrophic scars, keloids, and scleroderma. Here, we found that the successful binding of uPA and uPAR activates the downstream peroxisome proliferator-activated receptor (PPAR) signalling pathway to reduce the proliferation, migration, and contraction of disease-derived fibroblasts, contributing to the alleviation of skin fibrosis.

View Article and Find Full Text PDF

To systematically analyze the overall mA modification pattern in hyperplastic scars (HS). The mA modification patterns in HS and normal skin (NS) tissues were described by mA sequencing and RNA sequencing, and subsequently bioinformatics analysis was performed. The mA-related RNA was immunoprecipitated and verified by real-time quantitative PCR.

View Article and Find Full Text PDF