Food Addit Contam Part A Chem Anal Control Expo Risk Assess
September 2023
Spoilage of grains by mycotoxigenic fungi poses a great threat to food security and human health. Conventionally used chemical agents to prevent grain fungi contamination cause increasingly significant problems such as microbial resistance, residual toxicity and environmental unfriendliness. In recent years, plant essential oils (EOs) have become a hot spot in the research of control of grain fungi and mycotoxins, due to their extensive sources, non-toxicity, environmental friendliness and good antifungal efficiency.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
August 2022
The competitive inhibition of aflatoxigenic fungi by non-aflatoxigenic has proved to be an effective method to prevent and control peanut aflatoxin contamination, and most of the currently used inoculum carriers are grains. In this study, the reliability and efficiency of replacing grain kernels with novel chitosan-coated alginate-poly(N-isopropylacrylamide) (PNIPAAm) beads impregnated with biochar (CSACB) were evaluated. Characterisation of the beads was performed by SEM, thermogravimetry analysis (TGA), and swelling properties analyses.
View Article and Find Full Text PDFStarch, alginate, and poly(-isopropylacrylamide) (PNIPAAm) were combined to prepare a semi-interpenetrating network (IPN) hydrogel with temperature sensitivity. Calcium chloride was used as cross-linking agent, the non-toxigenic spores were successfully encapsulated as biocontrol agents by the method of ionic gelation. Characterization of the hydrogel was performed by Fourier-transform infrared spectroscopy (FTIR), scanning electron micrograph (SEM), and thermogravimetry analysis (TGA).
View Article and Find Full Text PDFFor the wise use of fungal biocontrol and metalaxyl fungicide, starch-alginate-based formulations have been developed by encapsulating metalaxyl and non-toxigenic spores simultaneously in the form of microspheres using calcium chloride as a cross-linking agent. The formulations were characterized by Fourier transform infrared spectroscopy (FTIR), a scanning electron micrograph (SEM), and thermogravimetry (TGA). Formulation characteristics, including the bead size, entrapment efficiency, swelling ratio of the beads, and rheological properties, were analyzed.
View Article and Find Full Text PDF