Compared with acidic environments, promoting the water dissociation process is crucial for speeding up hydrogen evolution reaction (HER) kinetics in alkaline electrolyte. Although the construction of heterostructured electrocatalysts by hybridizing noble metals with metal (hydr)oxides has been reported as a feasible approach to achieve high performance, the high cost, complicated fabrication process, and unsatisfactory mass activity limit their large-scale applications. Herein, we report a single-phase HER electrocatalyst composed of single-atom ruthenium (Ru) incorporated into a cobalt oxide spine structure (denoted as Ru SA/CoO), which possesses exceptional HER performance in alkaline media via unusual atomic-scale Ru-Co pair sites.
View Article and Find Full Text PDFBackground: This study utilised the Global Burden of Disease data (2010-2021) to analyse the rates and trends in point prevalence, annual incidence and years lived with disability (YLDs) for major chronic liver diseases, such as hepatitis B, hepatitis C, metabolic dysfunction-associated liver disease, cirrhosis and other chronic liver diseases.
Methods: Age-standardised rates per 100,000 population for prevalence, annual incidence and YLDs were compared across regions and countries, as well as the socio-demographic index (SDI). Trends were expressed as percentage changes (PC) and estimates were reported with uncertainty intervals (UI).
Background & Aims: This study used the Global Burden of Disease data (2010-2021) to analyze the rates and trends of point prevalence, annual incidence, and years lived with disability (YLDs) for metabolic dysfunction-associated steatotic liver disease (MASLD) in 204 countries.
Methods: Total numbers and age-standardized rates per 100,000 population for MASLD prevalence, annual incidence, and YLDs were compared across regions and countries by age, sex, and sociodemographic index (SDI). Smoothing spline models were used to evaluate the relationship between the burden of MASLD and SDI.
Protein-conjugated gold nanoparticles (protein-Au NPs) have been extensively applied in the field of biochemistry due to their unique properties. It is of great significance to regulate the protein loading, reduce the loss of protein activity, and enhance the stability and accessibility of protein-Au NPs for their biochemical application. Herein, we investigated the freezing-assisted strategy for binding proteins to Au NPs, which was effective for various proteins and Au NPs with different sizes.
View Article and Find Full Text PDFMatching ABO blood group antigens between donors and recipients is critical to prevent hyperacute rejection in kidney transplantation. Enzymatic conversion of blood group antigens to the universal O type presents a promising strategy to overcome barriers in ABO-incompatible kidney transplantation. In this study, we employ α-galactosidase from Bacteroides fragilis to convert type B kidneys to type O during hypothermic machine perfusion.
View Article and Find Full Text PDFThe detection of disease-related protein biomarkers plays a crucial role in the early diagnosis, treatment, and monitoring of diseases. The concentrations of protein biomarkers can vary significantly in different diseases or stages of the same disease. However, most of the existing analytical methods cannot simultaneously meet the requirements of high sensitivity and a wide dynamic range.
View Article and Find Full Text PDFThe reasonable design of an economical and robust bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is both essential but challenging. Herein, we synthesized a multi-interfacial NiP/WS/CoWO@C hybrid electrocatalyst devived from the heterometallic clusters [Co(TC4A)(WO)Cl][HPWO], in which NiP was incorporated into WS/CoWO@C nanosheets via interfacial interactions by in situ phosphorization processes. Theoretical calculations revealed that moderate electron transfer from CoWO and NiP to WS induced by the multi-heterojunction significantly regulate the binding energies of the reactive intermediates, thus enhacing its intrinsic activity.
View Article and Find Full Text PDFRenewable energy-powered seawater electrolysis is a green and attractive technique for producing high-purity hydrogen. However, severe chlorideions (Cl) and their derivatives tend to corrode anodic catalysts at ampere-level current densities and hinder the application of seawater-to-H systems. Herein, a polycalmagite (PCM)-coated NiFe layered double hydroxide is presented on Ni foam (NiFe LDH@PCM/NF) that exhibits exceptional stability in alkaline seawater.
View Article and Find Full Text PDFMolybdenum diphosphide (MoP), a topological semimetal, possesses distinctive properties and applications in catalysis, energy storage, and condensed matter physics. However, synthesizing high-purity MoP is complex and often results in undesired stoichiometric by-products. Additionally, the intrinsic orthorhombic crystal structure makes it difficult to synthesize MoP in a 2D morphology, which is desirable for device and energy applications.
View Article and Find Full Text PDFHydrogen is an essential energy resource, playing a pivotal role in advancing a sustainable future. Electrolysis of seawater shows great potential for large-scale hydrogen production but encounters challenges such as electrode corrosion caused by chlorine evolution. Herein, a durable CoCO/CoFe layered double hydroxide (LDH) electrocatalyst is presented for alkaline seawater oxidation, showcasing resistance to corrosion and stable operation exceeding 1,000 h at a high current density of 1 A cm.
View Article and Find Full Text PDFProcessing techniques are critical factors influencing the quality of hawk tea, yet systematic studies on their effects are limited. This study investigates the impact of four key processing procedures-fixation, reddening, fermentation, and compressing-using sensory evaluation, LC-MS/MS, and GC × GC-TOF-MS. Analysis identified 6951 non-volatile metabolites, including 107 marker metabolites, primarily in flavonoid synthesis and degradation pathways.
View Article and Find Full Text PDFBackground: Animal and human health are seriously threatened by bacterial infections, which can lead to bacteremia and extremely high rates of morbidity and mortality. Recently, there have been reports indicating the involvement of exosomal circular RNAs (circRNAs) in a range of human disorders and tumor types. However, the role of exosomal circRNAs in bacterial infection remains elusive.
View Article and Find Full Text PDFDiagnostic methods based on CRISPR technology have shown great potential due to their highly specific, efficient, and sensitive detection capabilities. Although the majority of the current studies rely on fluorescent dye-quencher reporters, the limitations of fluorescent dyes, such as poor photostability and small Stokes shifts, urgently necessitate the optimization of reporters. In this study, we developed innovative quantum dot (QD) reporters for the CRISPR/Cas systems, which not only leveraged the advantages of high photoluminescence quantum yield and large Stokes shifts of QDs but were also easily synthesized through a simple one-step hydrothermal method.
View Article and Find Full Text PDFAims: To explore the associations between cuprotosis-related genes (CRGs) across different stages of liver disease in metabolic dysfunction-associated fatty liver disease (MAFLD), including hepatocellular carcinoma (HCC).
Materials And Methods: We analysed several bulk RNA sequencing datasets from patients with MAFLD (n = 331) and MAFLD-related HCC (n = 271) and two MAFLD single-cell RNA sequencing datasets. To investigate the associations between CRGs and MAFLD, we performed differential correlation, logistic regression and functional enrichment analyses.
Background: Pediatric asthma poses a significant global health burden, impacting the well-being and daily lives of affected children. Aerobic exercise-based pulmonary rehabilitation emerges as a promising intervention to address the multifaceted challenges faced by pediatric asthma patients.
Objectives: The purpose of this systematic review and meta-analysis was to comprehensively evaluate the effects of aerobic exercise-based pulmonary rehabilitation on pulmonary function and quality of life in pediatric asthma patients.
Aim: Non-invasive diagnostics for metabolic dysfunction-associated fatty liver disease (MAFLD) remain challenging. We aimed to identify novel key genes as non-invasive biomarkers for MAFLD, elucidate causal relationships between biomarkers and MAFLD and determine the role of immune cells as potential mediators.
Materials And Methods: Utilizing published transcriptome data of patients with biopsy-proven MAFLD, we applied linear models for microarray data, least absolute shrinkage and selector operation (LASSO) regressions and receiver operating characteristic (ROC) curve analyses to identify and validate biomarkers for MAFLD.
In the past few years, the COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) seriously threatens global public health security due to its high contagiousness. It remains of vital importance to develop a rapid and sensitive assay for SARS-CoV-2. In this work, we proposed a sandwich-type assay based on poly(N-isopropylacrylamide) (PNIPAM), allowing efficient detection of the SARS-CoV-2 S1 protein in the homogeneous solution.
View Article and Find Full Text PDFTrends Endocrinol Metab
February 2025
Plant epiphytic microorganisms have established a unique symbiotic relationship with plants, which has a significant impact on their growth, immune defense, and environmental adaptation. However, the impact of fertilization methods on the epiphytic microbial community and their correlation with the yield and quality of medicinal plant was still unclear. In current study, we conducted a field fertilization experiment and analyzed the composition of epiphytic bacterial and fungal communities employing high throughput sequencing data in different organs (roots, stems, and leaves) of , as well as their correlation with plant growth.
View Article and Find Full Text PDFAliment Pharmacol Ther
August 2024
Renewable electricity-powered nitrate/carbon dioxide co-reduction reaction toward urea production paves an attractive alternative to industrial urea processes and offers a clean on-site approach to closing the global nitrogen cycle. However, its large-scale implantation is severely impeded by challenging C-N coupling and requires electrocatalysts with high activity/selectivity. Here, cobalt-nanoparticles anchored on carbon nanosheet (Co NPs@C) are proposed as a catalyst electrode to boost yield and Faradaic efficiency (FE) toward urea electrosynthesis with enhanced C-N coupling.
View Article and Find Full Text PDFAlpha-fetoprotein (AFP), as a tumor marker, plays a vital role in the diagnosis of liver cancer. In this work, a novel sandwich immunoassay based on a thermosensitive polymer, poly(N-isopropylacrylamide) (PNIPAM), was developed for the detection of AFP. This immunoassay could realize one-step rapid reaction within 1 h, and facilitate the separation of the target molecules by incorporating PNIPAM.
View Article and Find Full Text PDF