O-GlcNAc transferase (OGT) is the distinctive enzyme responsible for catalyzing O-GlcNAc addition to the serine or threonine residues of thousands of cytoplasmic and nuclear proteins involved in such basic cellular processes as DNA damage repair, RNA splicing, and transcription preinitiation and initiation complex assembly. However, the molecular mechanism by which OGT regulates gene transcription remains elusive. Using proximity labeling-based mass spectrometry, here, we searched for functional partners of OGT and identified interacting protein Dot1L, a conserved and unique histone methyltransferase known to mediate histone H3 Lys79 methylation, which is required for gene transcription, DNA damage repair, cell proliferation, and embryo development.
View Article and Find Full Text PDFTo examine the physiological roles of arginine vasotocin receptor (AVTR) and isotocin receptor (ITR) in osmoregulation of a euryhaline teleost, the marbled eel (Anguilla marmorata), three different genes coding for AVTRV1a2, AVTRV2 and ITR were cloned by screening an A. marmorata cDNA library. These receptors were expressed differentially and ubiquitously in the eight tissues we examined.
View Article and Find Full Text PDFFish Physiol Biochem
April 2018
In recent years, the production of eel larvae has dramatic declines due to reductions in spawning stocks, overfishing, growth habitat destruction and access reductions, and pollution. Therefore, it is particularly important and urgent for artificial production of glass eels. However, the technique of artificial hatching and rearing larvae is still immature, which has long been regarded as an extremely difficult task.
View Article and Find Full Text PDFThe Na/K-ATPase (NKA) is a primary electrogenic protein that promotes ion transport in teleosts. FXYD11 is a putative regulatory subunit of the NKA pump. The regulation of Na /K -ATPase and FXYD11 is of critical importance for osmotic homeostasis.
View Article and Find Full Text PDFHeat shock proteins (HSPs) are highly conserved molecular chaperones that play critical roles in both innate and adaptive immunity. However, little information about HSPs from marbled eel is known. In this study, the full-length (2527 bp), (2443 bp) and (2247 bp) were first cloned from , using rapid amplification of cDNA ends, containing open reading frames of 2181, 1932 and 1950 bp in length, and encoding proteins with 726, 643 and 649 amino acids, respectively.
View Article and Find Full Text PDFPelteobagrus vachelli is a well-known commercial species in Asia. However, a sudden lack of oxygen will result in mortality and eventually to pond turnover. Studying the molecular mechanisms of hypoxia adaptation in fishes will not only help us to understand fish speciation and the evolution of the hypoxia-signaling pathway, but will also guide us in the breeding of hypoxia-tolerant fish strains.
View Article and Find Full Text PDFLarge changes in oxygen availability in aquatic environments, ranging from anoxia through to hyperoxia, can lead to corresponding wide variation in the production of reactive oxygen species (ROS) by fish with aquatic respiration. In order to evaluate the effects of hypoxia and reoxygenation on oxidative stress in fish, the mRNA and protein expression of SODs (Cu/Zn-SOD and Mn-SOD) as well as indices (CP, LPO and MDA) and enzymatic activities (SOD, CAT, GPx, GR and GST) were analyzed in liver and brain tissues of Pelteobagrus vachelli. Predominant expression of PvSOD2 was detected in heart, brain, and liver.
View Article and Find Full Text PDFOsmoregulation plays an important role in the migration process of catadromous fish. The osmoregulatory mechanisms of tropical marbled eel (Anguilla marmorata), a typical catadromous fish, did not gain sufficient attention, especially at the molecular level. In order to enrich the protein database of A.
View Article and Find Full Text PDF