Cancer Osaka thyroid (COT) kinase is an important regulator of pro-inflammatory cytokines in macrophages. Thus, pharmacologic inhibition of COT should be a valid approach to therapeutically intervene in the pathogenesis of macrophage-driven inflammatory diseases such as rheumatoid arthritis. We report the discovery and chemical optimization of a novel series of COT kinase inhibitors, with unprecedented nanomolar potency for the inhibition of TNFα.
View Article and Find Full Text PDFMacrophages are important cellular effectors in innate immune responses and play a major role in autoimmune diseases such as rheumatoid arthritis. Cancer Osaka thyroid (COT) kinase, also known as mitogen-activated protein kinase kinase kinase 8 (MAP3K8) and tumor progression locus 2 (Tpl-2), is a serine-threonine (ST) kinase and is a key regulator in the production of pro-inflammatory cytokines in macrophages. Due to its pivotal role in immune biology, COT kinase has been identified as an attractive target for pharmaceutical research that is directed at the discovery of orally available, selective, and potent inhibitors for the treatment of autoimmune disorders and cancer.
View Article and Find Full Text PDFAllosteric inhibitors of Bcr-Abl have emerged as a novel therapeutic option for the treatment of CML. Using fragment-based screening, a search for novel Abl inhibitors that bind to the myristate pocket was carried out. Here we show that not all myristate ligands are functional inhibitors, but that the conformational state of C-terminal helix_I is a structural determinant for functional activity.
View Article and Find Full Text PDFThe ATP-competitive inhibitors dasatinib and nilotinib, which bind to catalytically different conformations of the Abl kinase domain, have recently been approved for the treatment of imatinib-resistant CML. These two new drugs, albeit very efficient against most of the imatinib-resistant mutants of Bcr-Abl, fail to effectively suppress the Bcr-Abl activity of the T315I (or gatekeeper) mutation. Generating new ATP site-binding drugs that target the T315I in Abl has been hampered, amongst others, by target selectivity, which is frequently an issue when developing ATP-competitive inhibitors.
View Article and Find Full Text PDFIn an effort to find new pharmacological modalities to overcome resistance to ATP-binding-site inhibitors of Bcr-Abl, we recently reported the discovery of GNF-2, a selective allosteric Bcr-Abl inhibitor. Here, using solution NMR, X-ray crystallography, mutagenesis and hydrogen exchange mass spectrometry, we show that GNF-2 binds to the myristate-binding site of Abl, leading to changes in the structural dynamics of the ATP-binding site. GNF-5, an analogue of GNF-2 with improved pharmacokinetic properties, when used in combination with the ATP-competitive inhibitors imatinib or nilotinib, suppressed the emergence of resistance mutations in vitro, displayed additive inhibitory activity in biochemical and cellular assays against T315I mutant human Bcr-Abl and displayed in vivo efficacy against this recalcitrant mutant in a murine bone-marrow transplantation model.
View Article and Find Full Text PDFAs a drug used to treat imatinib-resistant and -intolerant, chronic and advanced phase chronic myelogenous leukaemia, nilotinib is well characterised as a potent inhibitor of the Abl tyrosine kinase activity of wild-type and imatinib-resistant mutant forms of BCR-Abl. Here we review the profile of nilotinib as a protein kinase inhibitor. Although an ATP-competitive inhibitor of Abl, nilotinib binds to a catalytically inactive conformation (DFG-out) of the activation loop.
View Article and Find Full Text PDFImatinib (Glivec or Gleevec) potently inhibits the tyrosine kinase activity of BCR-ABL, a constitutively activated kinase, which causes chronic myelogenous leukemia (CML). Here we report the first almost complete backbone assignment of c-ABL kinase domain in complex with imatinib.
View Article and Find Full Text PDFThe recombinant expression of eukaryotic proteins in Escherichia coli often results in protein aggregation. Several articles report on improved solubility and increased purification yields of individual proteins upon over-expression of E. coli chaperones but this effect might potentially be protein-specific.
View Article and Find Full Text PDFCurrent structural understanding of kinases is largely based on x-ray crystallographic studies, whereas very little data exist on the conformations and dynamics that kinases adopt in the solution state. ABL kinase is an important drug target in the treatment of chronic myelogenous leukemia. Here, we present the first characterization of ABL kinase in complex with three clinical inhibitors (imatinib, nilotinib, and dasatinib) by modern solution NMR techniques.
View Article and Find Full Text PDFAs exemplified by three cases, we show that the addition of a small molecular weight inhibitor to the culture of Baculovirus-infected insect cells can dramatically improve the expression of a recombinant kinase. The expression of the tyrosine kinase KDR was sevenfold higher and mainly in a soluble form, when the KDR inhibitor PTK/ZK was added to the culture at the time of Baculovirus infection. The expression of the catalytic domain of the serine/threonine kinase PKCtheta, which is otherwise not possible with the Baculovirus expression system, was expressed mainly soluble at 120mg/L by the addition of the PKC inhibitor BIM XI to the culture of Baculovirus-infected insect cells.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
January 2007
Chronic myelogenous leukaemia (CML) results from the Bcr-Abl oncoprotein, which has a constitutively activated Abl tyrosine kinase domain. Although most chronic phase CML patients treated with imatinib as first-line therapy maintain excellent durable responses, patients who have progressed to advanced-stage CML frequently fail to respond or lose their response to therapy owing to the emergence of drug-resistant mutants of the protein. More than 40 such point mutations have been observed in imatinib-resistant patients.
View Article and Find Full Text PDFThe regulation of the activity of Abl and Src family tyrosine kinases is mediated by intramolecular interactions between the SH3, SH2, and kinase (SH1) domains. We have determined the crystal structure of an unphosphorylated form of c-Src in which the SH2 domain is not bound to the C-terminal tail. This results in an open structure where the kinase domain adopts an active conformation and the C terminus binds within a hydrophobic pocket in the C-terminal lobe.
View Article and Find Full Text PDFThis report shows for the first time the efficient uniform isotope labeling of a recombinant protein expressed using Baculovirus-infected insect cells. The recent availability of suitable media for (15)N- and (13)C/(15)N-labeling in insect cells, the high expression of Abl kinase in these labeling media and a suitable labeling protocol made it possible to obtain a (1)H-(15)N-HSQC spectrum for the catalytic domain of Abl kinase of good quality and with label incorporation rates > 90%. The presented isotope labeling method should be applicable also to further proteins where successful expression is restricted to the Baculovirus expression system.
View Article and Find Full Text PDFThe Bcr-Abl tyrosine kinase oncogene causes chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). We describe a novel selective inhibitor of Bcr-Abl, AMN107 (IC50 <30 nM), which is significantly more potent than imatinib, and active against a number of imatinib-resistant Bcr-Abl mutants. Crystallographic analysis of Abl-AMN107 complexes provides a structural explanation for the differential activity of AMN107 and imatinib against imatinib-resistant Bcr-Abl.
View Article and Find Full Text PDFSelective isotopic labeling of larger proteins greatly simplifies protein NMR spectra and reduces signal overlap, but selectively labeled proteins cannot be easily assigned since the sequential assignment method is not applicable. Here we describe a strategy for resonance assignment in selectively labeled proteins. Our approach involves a spin-labeled analog of a ligand of which the three-dimensional structure in complex with the target protein is known.
View Article and Find Full Text PDFFollowing the paradigm set by STI571, protein tyrosine kinase inhibitors are emerging as a promising class of drugs, capable of modulating intracellular signaling and demonstrating therapeutic potential for the treatment of proliferative diseases. Although the majority of chronic phase CML patients treated with STI571 respond, some patients, especially those with more advanced disease, relapse. This article reviews the reasons for relapse and, in particular, analyses resistance resulting from Bcr-Abl tyrosine kinase domain mutations at the molecular level.
View Article and Find Full Text PDFInitial studies with angiogenesis inhibitors showed little clinical benefit. However, recently reported clinical studies in colorectal cancer have shown that bevacizumab, a vascular endothelial growth factor (VEGF) monoclonal antibody, in combination with cytotoxic therapy has positive effects on patient survival. Furthermore, the VEGF receptor kinase (VEGF-R) tyrosine kinase inhibitor, vatalanib, has also shown encouraging results in colorectal cancer, with molecular resonance imaging providing evidence that the anti-tumor efficacy was indeed the result of anti-angiogenic activity.
View Article and Find Full Text PDFCulture conditions for successful amino-acid-type selective isotope labeling of proteins expressed in Baculovirus-infected insect cells are described. The method was applied to the selective labeling of the catalytic domain of c-Abl kinase with (15)N-phenylalanine, (15)N-glycine, (15)N-tyrosine or (15)N-valine. For the essential amino acids phenylalanine, tyrosine and valine high (15)N-label incorporation rates of >/=90% and approximately the expected number of resonances in the HSQC spectra were observed, which was not the case for the non-essential amino acid glycine.
View Article and Find Full Text PDFThe understanding of the pathophysiology of a large number of cancer types provides a strategy to target cancer cells with minimal effect on normal cells. Protein phosphorylation and dephosphorylation play a pivotal role in intracellular signaling; to regulate signal transduction pathways, there are approximately 700 protein kinases and 100 protein phosphatases encoded within the human genome. In cancer, as well as in other proliferative diseases, unregulated cell proliferation, differentiation and survival frequently results from abnormal protein phosphorylation.
View Article and Find Full Text PDFMany components of mitogenic signaling pathways in normal and neoplastic cells have been identified, including the large family of protein kinases, which function as components of signal transduction pathways, playing a central role in diverse biological processes, such as control of cell growth, metabolism, differentiation, and apoptosis. The development of selective protein kinase inhibitors that can block or modulate diseases caused by abnormalities in these signaling pathways is widely considered a promising approach for drug development. Because of their deregulation in human cancers, protein kinases, such as Bcr-Abl, those in the epidermal growth factor-receptor (HER) family, the cell cycle regulating kinases such as the cyclin-dependent kinases, as well as the vascular endothelial growth factor-receptor kinases involved in the neo-vascularization of tumors, are among the protein kinases considered as prime targets for the development of selective inhibitors.
View Article and Find Full Text PDFThe production of recombinant leech-derived tryptase inhibitor (rLDTI) by two different strains of Saccharomyces cerevisiae resulted in the secretion of non-glycosylated and glycosylated rLTDI. Monosaccharide analysis and a-mannosidase treatment demonstrated that glycosylated rLDTI was exclusively alpha-mannosylated. A trypsin digest of reduced and S-carboxymethylated glycosylated rLDTI was separated on a reverse-phase HPLC column.
View Article and Find Full Text PDFBackground: Hirustasin belongs to a class of serine protease inhibitors characterized by a well conserved pattern of cysteine residues. Unlike the closely related inhibitors, antistasin/ghilanten and guamerin, which are selective for coagulation factor Xa or neutrophil elastase, hirustasin binds specifically to tissue kallikrein. The conservation of the pattern of cysteine residues and the significant sequence homology suggest that these related inhibitors possess a similar three-dimensional structure to hirustasin.
View Article and Find Full Text PDFA synthetic gene coding for the 55-amino acid protein hirustasin, a novel tissue kallikrein inhibitor from the leech Hirudo medicinalis, was generated by polymerase chain reaction using overlapping oligonucleotides, fused to the yeast alpha-factor leader sequence and expressed in Saccharomyces cerevisiae. Recombinant hirustasin was secreted mainly as incompletely processed fusion protein, but could be processed in vitro using a soluble variant of the yeast yscF protease. The processed hirustasin was purified to better than 97% purity.
View Article and Find Full Text PDFAn efficient expression/purification procedure has been developed which allows the production of pure, biologically active recombinant leech-derived tryptase inhibitor (rLDTI), originally found in the leech Hirudo medicinalis. The gene for LDTI was generated synthetically from three overlapping oligonucleotides by PCR synthesis. LDTI was expressed in the yeast Saccharomyces cerevisiae under the control of the copper-inducible CUP1 promoter and fused to the invertase signal sequence (SUC2).
View Article and Find Full Text PDFHuman interferon-alpha 8 was expressed in Saccharomyces cerevisiae and found to accumulate intracellularly in an insoluble form. The protein could be solubilized and converted to a biologically active form with high yield by a denaturation-refolding procedure. The interferon-alpha 8 was further purified to apparent homogeneity by copper-chelate affinity chromatography and anion-exchange chromatography and fully characterized by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE), N-terminal sequence analysis, mass spectrometry, circular-dichroism (CD) spectroscopy and specific activity.
View Article and Find Full Text PDF