Publications by authors named "FenEr Chen"

Flow chemistry has many advantages over batch synthesis of organic small-molecules in terms of environmental compatibility, safety and synthetic efficiency when scale-up is considered. Herein, we report the 10-step chemo-biocatalytic continuous flow asymmetric synthesis of cyproterone acetate (4) in which 10 transformations are combined into a telescoped flow linear sequence from commercially available 4-androstene-3, 17-dione (11). This integrated one-flow synthesis features an engineered 3-ketosteroid-Δ-dehydrogenase (ReM2)-catalyzed Δ-dehydrogenation to form the C1, C2-double bond of A ring, a substrate-controlled Co-catalyzed Mukaiyama hydration of 9 to forge the crucial chiral C17α-OH group of D ring with excellent stereoselectivity, and a rapid flow Corey-Chaykovsky cyclopropanation of 7 to build the cyclopropyl core of A ring.

View Article and Find Full Text PDF

In order to enhance the anti-HIV-1 potency and selectivity of the previously reported compound 3 (EC = 27 nM, SI = 1361), a series of novel biphenyl-diarylpyrimidine derivatives were developed by employing structure-based drug design strategy. Among these derivatives, compound M44 demonstrated the most potent inhibitory activity against wild-type (WT) HIV-1 as well as five drug-resistant mutants (EC = 5-148 nM), which were 5-173 times more potent than that of 3 (EC = 27-9810 nM). Furthermore, this analogue exhibited approximately 11-fold lower cytotoxicity (CC = 54 μM) than that of etravirine and rilpivirine.

View Article and Find Full Text PDF

C-C and C-X bond forming reactions are essential tools in organic synthesis, constantly revolutionizing human life. Among the key methods for constructing new chemical bonds are nucleophilic addition reactions involving imines. However, the inherent challenges in synthesizing and storing imines have stimulated interest in designing stable precursors, which generates imines in situ during the reaction.

View Article and Find Full Text PDF

We report, for the first time, a visible-light-promoted Markovnikov hydroalkoxylation of α-trifluoromethyl alkenes with 1,2-diketones. This transformation proceeded smoothly in the presence of a tertiary amine (EtN), providing a series of enol ethers containing the trifluoromethylated tetrasubstituted center in moderate to excellent yields. In this protocol, hydrogen atom transfer between this amine and 1,2-diketone substrate affords a ketyl radical and an α-aminoalkyl radical, which engages in the formation of a radical anion of the α-CF alkene via a single electron transfer.

View Article and Find Full Text PDF

Considering the nonideal antiresistance efficacy of our previously reported non-nucleoside reverse transcriptase inhibitor , a series of novel piperidine-diarylpyrimidine derivatives were designed through expanding solvent/protein region occupation. The representative compound proved to be exceptionally potent against Y188L (EC = 23 nM), F227L + V106A (EC = 15 nM) and RES056 (EC = 45 nM), significantly better than . This analog exerted strong inhibition against wild-type HIV-1 (EC = 3 nM) and single mutant strains (L100I, K103N, Y181C, E138 K).

View Article and Find Full Text PDF

Targeting ABCB1 is a promising strategy in combating multidrug resistance. Our cell-based phenotypic screening led to the discovery of novel triazolo[1,5-]pyrimidone-based ABCB1 modulators. Notably, was identified as a significant contributor to heightened sensitization of human colorectal adenocarcinoma cells (SW620/Ad300) to paclitaxel (IC = 5 nM).

View Article and Find Full Text PDF

Herein, we describe a green and efficient photoredox catalytic C3-H alkoxycarbonylation between quinoxalin-2(1)-ones or coumarins and readily available alkyloxalyl chlorides under ambient conditions. A series of quinoxaline-3-carbonyl and coumarin-3-carbonyl compounds are prepared through the radical addition of -generated alkoxycarbonyl radicals. Notably, this protocol features mild conditions, operational simplicity, and excellent functional group tolerance.

View Article and Find Full Text PDF

Our previously disclosed biphenyl-DAPY emerged as a potent inhibitor against WT HIV-1 and various mutant strains. Yet, its journey toward clinical application was thwarted by pronounced cytotoxicity and low selectivity (CC = 6 μM, SI = 3515). The safety improvement approach we employed in this work entailed the incorporation of diverse heteroaromatic substituents at the C5 position to exploit the tolerant regions of the NNRTIs' binding pocket through fragment addition-based drug design strategy, ultimately leading to the identification of a series of novel heteroaromatic-biphenyl-DAPYs.

View Article and Find Full Text PDF

A coupling reaction between diazo compounds and phenyl benzyl sulfide catalyzed by TfOH has been reported. This reaction can synthesize important α-arylthio carbonyl compounds via regioselective cleavage and reconfiguration of C-S bonds, and various functional groups were tolerant to the reaction conditions. Mechanistic studies have conclusively established that the pivotal intermediate in the reaction was meticulously investigated through spectroscopic evidence, complemented by rigorous control experiments.

View Article and Find Full Text PDF

Various prenylated indoline alkaloids with diverse biological activities, including (-)-debromoflustramine B with significant butyrylcholinesterase inhibitory activity, could be synthesized by dearomative prenylation reactions of tryptophan derivatives. However, previously reported dearomative prenylations were limited to batch reactions at the milligram scale, requiring multistep reactions and complex post-processing to obtain the desired natural products. The more efficient synthesis of alkaloids remains challenging, as does the recovery of expensive catalysts.

View Article and Find Full Text PDF

A novel Ir-catalyzed asymmetric hydrogenation protocol for the synthesis of chiral tetrahydroquinoxaline (THQ) derivatives has been developed. By simply adjusting the reaction solvent, both enantiomers of mono-substituted chiral THQs could be selectively obtained in high yields with excellent enantioselectivities (toluene/dioxane: up to 93% yield and 98% ee (); EtOH: up to 83% yield and 93% ee ()). For 2,3-disubstituted chiral THQs, the -hydrogenation products were obtained with up to 95% yield, 20 : 1 dr, and 94% ee.

View Article and Find Full Text PDF
Article Synopsis
  • Reverse transcriptase is crucial in the development of HIV, leading to significant advances in drug discovery over the last 30 years, particularly in nonnucleoside reverse transcriptase inhibitors (NNRTIs).
  • NNRTIs have become key treatments for HIV and six have gained FDA approval, greatly enhancing the quality of life for patients.
  • Despite their effectiveness, drug resistance remains a challenge, necessitating ongoing research which is summarized in a comprehensive review of NNRTI advancements from 2016 to 2023 for the medicinal chemistry community.
View Article and Find Full Text PDF

Aftobetin is a non-invasive diagnosis of Alzheimer's disease, that can bind with aggregated β-amyloid peptide in eye's lenses, used for early diagnosis of Alzheimer's disease in a rapid and painless mode. The reported synthesis of this probe fell short in the aspects of greenness and economy due to the involvement of toxic Chromium(IV) oxidant, noble palladium catalyst, elevated reaction temperature, the long reaction time as well as the cumbersome workup. Herein, a holistic optimization of the synthetic process was achieved via the employment of flow technology and heterogenous photocatalysis.

View Article and Find Full Text PDF

Starting from our previously reported nonnucleoside reverse transcriptase inhibitor (NNRTI, 3), continuous efforts were made to enhance its potency and safety through a structure-based drug design strategy. This led to the discovery of a series of novel piperidine-biphenyl-diarylpyrimidines (DAPYs). Compound 10p, the most active compound in this series, exhibited an EC value of 6 nM against wide-type HIV-1 strain, which was approximately 560-fold more potent than the initial compound 3 (EC = 3.

View Article and Find Full Text PDF

A Pd-catalyzed enantioselective aminosilylation of alkenes via tandem Aza-Heck/silylation reaction under Pd/Sadphos catalysis is disclosed. A wide array of oxime esters and silicon reagents are tolerated, furnishing the chiral pyrrolines bearing one quaternary or two contiguous stereocenters in good yield with high enantioselectivity. Not only terminal alkenes but also tri-substituented internal alkenes successfully participate in the reaction, delivering vicinal stereocenters in complete diastereoselectivity and high enantioselectivity.

View Article and Find Full Text PDF

We have developed a highly regio-, diastereo-, and enantioselective Cu-catalyzed desymmetrization of inert -diethers using Grignard reagents. Moreover, previous inaccessible sterically hindered organometallic reagents are realized in the reaction with broad secondary alkyl Grignard reagents. Finally, detailed control experiments and density functional theory calculations revealed the desymmetrization of -diethers exploits a direct -S2' pathway, in the absence of an -generated allyl bromine intermediate.

View Article and Find Full Text PDF

This paper describes a concise, asymmetric and stereodivergent total synthesis of tacaman alkaloids. A key step in this synthesis is the biocatalytic Baeyer-Villiger oxidation of cyclohexanone, which was developed to produce seven-membered lactones and establish the required stereochemistry at the C14 position (92 % yield, 99 % ee, 500 mg scale). Cis- and trans-tetracyclic indoloquinolizidine scaffolds were rapidly synthesized through an acid-triggered, tunable acyl-Pictet-Spengler type cyclization cascade, serving as the pivotal reaction for building the alkaloid skeleton.

View Article and Find Full Text PDF

Engineering biocatalysts with enhanced stereoselectivity is highly desirable, and active-site loop dynamics play an important role in its regulation. However, knowledge of their precise roles in catalysis and evolution is limited. Here, we used the strategy of Rosetta enzyme design combined molecular dynamic simulations (MDs) to reprogram the landscapes of the key active-site loop dynamics of the carbonyl reductase LfSDR1 to improve stereoselectivity.

View Article and Find Full Text PDF

Mainly owing to their well-defined pore structures and high surface areas, metal-organic frameworks (MOFs) have recently become a versatile class of materials for enzyme immobilization. Nevertheless, most previous studies were focused on model enzymes such as cytochrome c, catalase, and glucose oxidase, with the application of MOF-derived biocomposites for (asymmetric) organic synthesis being rare. In the present work, the immobilization of the ketoreductase KmCR2 onto the zeolitic imidazolate framework (ZIF), a prominent type of MOF, was pursued using the controlled co-precipitation strategy, with a low 2-methylimidazole (2-mIM)/Zn molar ratio of 8 : 1 being employed.

View Article and Find Full Text PDF

The synthesis of enantiomerically pure compounds is a pivotal subject in the field of chemistry, with enantioselective catalysis currently standing as the primary approach for delivering specific enantiomers. Among these strategies, Cu-catalyzed asymmetric allylic substitution (AAS) is significant and irreplaceable, especially when it comes to the use of non-stabilized nucleophiles (p > 25). Although Cu-catalyzed AAS of prochiral substrates has also been widely developed, methodologies involving racemic/ substrates are highly desirable, as the substrates undergo dynamic processes to give single enantiomer products.

View Article and Find Full Text PDF
Article Synopsis
  • - The study presents a new radical activation strategy for N-glycosylation that operates under basic conditions, improving upon traditional methods that struggled with low selectivity and limited applications.
  • - This method utilizes glycosyl sulfinate donors and shows excellent tolerance for various N-aglycone types, resulting in the formation of well-defined glycosides.
  • - Preliminary studies suggest that iodide plays a key role in creating a reactive glycosyl radical, leading to a stereospecific reaction that enhances the synthesis of complex glycosidic structures.
View Article and Find Full Text PDF

The present Letter demonstrates a photoswitched stereodivergent synthesis of allylic sulfones from sodium sulfinates, triphenylvinylphosphonium chloride, and (hetero)aromatic aldehydes in a single step. Mechanistically, -allylic sulfones, generated from the unstabilized ylide intermediates and aldehydes , could be finally converted to -allylic sulfones via photochemical isomerization in the presence of a catalytic amount of bis(2-thienyl) ketone.

View Article and Find Full Text PDF

We have successfully accomplished a catalytic asymmetric total synthesis of entecavir, a first-line antihepatitis B virus medication. The pivotal aspect of our strategy lies in the utilization of a Pd-catalyzed enyne borylative cyclization reaction, enabling the construction of a highly substituted cyclopentene scaffold with exceptional stereoselectivity. Additionally, we efficiently accessed the crucial 1,3-diol enyne system early in our synthetic route through a diarylprolinol organocatalyzed enantioselective cross-aldol reaction and Re-catalyzed allylic alcohol relocation.

View Article and Find Full Text PDF

Targeting Ribonuclease H (RNase H) has been considered a viable strategy for HIV therapy. In this study, a series of novel thiazolo[3, 2-a]pyrimidine derivatives were firstly designed and synthesized as potential inhibitors of HIV-1 RNase H. Among these compounds, A28 exhibited the most potent inhibition against HIV-1 RNase H with an IC value of 4.

View Article and Find Full Text PDF

A palladium-catalyzed decarboxylative asymmetric [4 + 2] annulation of methyleneindolinones with a zwitterionic oxo-1,4-dipole intermediate was successfully developed to access spirocyclic oxindoles bearing two vicinal stereocenters in good yields with high diastereoselectivities and enantioselectivities. This strategy features a broad substrate scope (28 examples), allowing for efficient scale-up. Further selective transformation of the product and preliminary mechanistic studies were conducted.

View Article and Find Full Text PDF