Publications by authors named "Fen-Ying Kong"

Covalent organic frameworks (COFs) can be rationally designed with functional organic ligands to improve the electrochemical responsiveness of the electrode toward certain medicinal compounds. In this study, we synthesized a COF-Ni electrocatalyst material, which is formed by covalent coupling of electron-rich 2,3,6,7-tetrakis (4-formylphenyl) tetrakis (4-imidazolyl) (TTF-4CHO) and hole-rich 5,10,15,20-tetrakis (4-aminophenyl) porphyrin nickel(II) (TAPP-Ni). The reasonable electron transfer path design, the large specific surface area of the COF and the physical properties of ordered nanopores, as well as the Ni-N bond as a highly active catalytic center, allow the COF-Ni material modified electrode to exhibit excellent sensing performance for acetaminophen (ACOP).

View Article and Find Full Text PDF

In this research, the TT-COF(Fe)@NH-CNTs was innovatively prepared through a post-modification synthetic process functionalized TT-COF@NH-CNTs with active site (Fe), where TT-COF@NH-CNTs was prepared via a one-pot strategy using 5,10,15,20-tetrakis (para-aminophenyl) porphyrin (TTAP), 2,3,6,7-tetra (4-formylphenyl) tetrathiafulvalene (TTF) and aminated carbon nanotubes (NH-CNTs) as raw materials. The complex TT-COF(Fe)@NH-CNTs material possessed porous structures, outstanding conductivity and rich catalytic sites. Thus, it can be adopted to construct electrochemical sensor with glassy carbon electrode (GCE).

View Article and Find Full Text PDF

Reticular heterojunctions on the basis of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have sparked considerable interest in recent research endeavors, which nevertheless have seldom been studied in optoelectronic biosensing. In this work, its utilization for organic photoelectrochemical transistor (OPECT) detection of the important cancer biomarker of neuron-specific enolase (NSE) is reported. A MOF@COF@CdS quantum dots (QDs) heterojunction is rationally designed to serve as the photogating module against the polymeric channel.

View Article and Find Full Text PDF

Copper ions (Cu) play an essential role in various cellular functions, including respiration, nerve conduction, tissue maturation, oxidative stress defense, and iron metabolism. Covalent organic frameworks (COFs) are a class of porous crystalline materials with directed structural designability and high stability due to the combination of different monomers through covalent bonds. In this study, we synthesized a porphyrin-tetrathiazole COF (TT-COF(Zn)) with Zn-porphyrin and tetrathiafulvalene (TTF) as monomers and used it as a photoactive material.

View Article and Find Full Text PDF

A fluorometric method based on boron, bromide-codoped carbon dots (BBCNs) was developed for the first time for the highly selective detection of -nitroaniline (PNA) in wastewater samples. It should be noted that the introduction of bromine greatly increases the molecular polarizability of the probe, which can regulate the energy level matching between the probe and PNA, resulting in the interaction between BBCNs and PNA. In the presence of PNA, the fluorescence of BBCNs is obviously quenched and accompanied by a red shift of the fluorescence band, which might be attributed to the formation of aggregates caused by the polar adsorption of BBCNs and PNA.

View Article and Find Full Text PDF

Sensitive and convenient determination of gallic acid (GA) is vital for food safety. Here, a novel porphyrin (Cu)-based covalent organic framework named as COF(Cu) was successfully synthesized by condensing pre-metalated 5,10,15,20-tetrakis (para-aminophenyl) porphyrin copper (II) and 2,3,6,7-tetra (4-formylphenyl) tetrathiafulvalene ligands. By combining the advantages of porphyrin with tetrathiafulvalene, it may be possible to create a COF with an intrinsically effective charge-transfer channel.

View Article and Find Full Text PDF

Innovative optoelectronics are expected to play more important role in clinical diagnosis. In this study, on the basis of sensitive gating effect by in situ enzymatic functionalization of semiconductors, a novel organic photoelectrochemical transistor (OPECT) detection of serum alkaline phosphatase (ALP) level was demonstrated. Specifically, the OPECT detection operates upon the ALP-catalyzed hydrolysis of sodium thiophosphate to yield hydrogen sulfide (HS), which could in situ generate CdS on the TiO electrode in the presence of Cd cations.

View Article and Find Full Text PDF

A novel deep-ultraviolet and dual-emission carbon nanodots (DUCDs)-based dual-channel ratiometric probe was prepared by a one-pot environmental-friendly hydrothermal process using guanidine as the only starting material for sensing polyphenol in tea sample (TPPs). Under the exposure to TPPs, the DUCDs not only provided a characteristic colorimetric response to TPPs, but also displayed TPPs-sensitive ratiometric fluorescence quenching. The detection mechanism was proved to be that enrichment-specific hydroxyl sites (e.

View Article and Find Full Text PDF

An electrochemical sensor for sensitive sensing of acyclovir (ACV) was designed by using the reduced graphene oxide-TiO-Au nanocomposite-modified glassy carbon electrode (rGO-TiO-Au/GCE). Transmission electron microscopy, X-ray diffractometer, and X-ray photoelectron spectroscopy were used to confirm morphology, structure, and composition properties of the rGO-TiO-Au nanocomposites. Cyclic voltammetry and linear sweep voltammetry were used to demonstrate the analytical performance of the rGO-TiO-Au/GCE for ACV.

View Article and Find Full Text PDF

The design and development of a 3D hierarchical CdS/NiO heterojunction and its application in a self-powered cathodic photoelectrochemical (PEC) bioanalysis is introduced. Specifically, NiO nanoflakes (NFs) were in situ formed on carbon fibers via a facile liquid-phase deposition method followed by an annealing step and subsequent integration with CdS quantum dots (QDs). The glucose oxidase (GOx) was then coated on the photocathode to allow the determination of glucose.

View Article and Find Full Text PDF

p-Nitrophenol and its derivatives can cause serious harm to the health of mankind and the earth's ecosystem. Therefore, it is necessary to develop a novel and rapid detection technology for p-nitrophenol and its derivative. Herein, excellent water-soluble, large-size and dual-emissive neuron cell-analogous carbon-based probes (NCNPs) have been prepared via a solvothermal approach, using o-phenylenediamine as the only precursor, which exhibit two distinctive fluorescence (FL) peaks at 420 and 555 nm under 345 nm excitation.

View Article and Find Full Text PDF

The preparation of boron-carbon-oxygen (BCO)-based heterostructure needs commonly high temperature, high pressure and/or auxiliary strong oxidant. And the BCO-based probe for the sensing application is still rare owing to their few active groups, low quantum yield or missing specificity. Exploring BCO-based heterostructured probe via simple routes and application in sensing, therefore, is highly challenging.

View Article and Find Full Text PDF

Herein, we describe a customized approach for facile preparation of three-dimensional (3D) NiO nanoflakes (NFs)/carbon fiber meshwork (CFM) and its validation as a common photocathode matrix for photoelectrochemical (PEC) bioanalysis, which to our knowledge has not been reported. Specifically, 3D NiO NFs/CFM was fabricated by a sequential liquid phase deposition and annealing process, which was then characterized by scanning electron microscopy, X-ray photoelectron spectrum, UV-vis absorption spectra and N adsorption-desorption measurement. Sensitized by BiOI and incorporated with an alkaline phosphatase (ALP)/tyrosinase (TYR) bi-enzyme cascade system, a sensitive split-type cathodic PEC bioanalysis for the determination of ALP was achieved.

View Article and Find Full Text PDF

The development of near-infrared (NIR) emission nanoprobes for the ratiometric fluorescent determination of living cells in vitro/vivo is of great analytical importance. In this work, dual-NIR-emissive Zn-doped carbon-based nanosheets (Zn-CNSHs) were prepared with a beneficial and special donor-π-acceptor-conjugated (D-π-A-conjugated) spatial framework, which resulted in not only a much lower HOMO-LUMO energy level but also excellent biocompatibility and physicochemical properties. The Zn-CNSHs were prepared by simple one-pot solvothermal synthesis with zinc gluconate (ZGN) and a strong acid and exhibited two distinctive photoluminescence (PL) peaks at 620 and 720 nm with the 600 nm excitation.

View Article and Find Full Text PDF

Recently, the development of a novel fluorescent (FL) nanoprobe for ratiometric detection of antibiotics in real-world samples has received more and more attention. In this article, the distinctive optical properties of deep-ultraviolet emission, a narrowed full width at half maximum (∼20 nm) and excitation-independent emission of a carbonized nanoprobe (CNP) were easily prepared by an environmentally friendly approach of solvothermal treatment using melamine as the precursor and HO as the solvent. The obtained CNP can be further utilized as an efficient ratiometric FL nanoprobe for enrofloxacin (EFC) and feroxacin (FXC) detection based on the fact that the FL quenching of the CNP was accompanied by an FL increase with EFC/FXC based on the inner filter effect (IFE).

View Article and Find Full Text PDF

A novel voltammetric sensor was designed and used for the determination of l-tyrosine (l-Tyr) by surface modification of a glassy carbon electrode with reduced graphene oxide-hemin-Ag (rGO-H-Ag) nanocomposites. The nanocomposites were synthesized by a facile one-pot hydrothermal method and characterized by means of transmission electron microscopy and Raman spectroscopy. The determination of l-Tyr was investigated by cyclic voltammetry and further quantified using differential pulse voltammetry.

View Article and Find Full Text PDF

Bimetallic Ag-Pt nanoparticles decorated on the surface of reduced graphene oxide (Ag-Pt/rGO) were designed and selected as a nanozyme for the assay of hydrogen peroxide. The nanocomposites were prepared through a one-pot reduction of potassium chloroplatinate, silver nitrate, and graphene oxide under ultraviolet irradiation without using any extra chemical reducing agents or surfactants. The successful formation of Ag-Pt/rGO nanocomposites was confirmed by transmission electron microscopy, energy disperse spectroscopy mapping, X-ray photoelectron spectroscopy, and X-ray diffraction analysis.

View Article and Find Full Text PDF

The Au-Hg amalgam anchored on the surface of reduced graphene oxide nanosheets (Au-Hg/rGO) has been synthesized successfully and characterized by various techniques such as transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The Au-Hg/rGO nanocomposites were found to possess excellent peroxidase-like catalytic activity and can quickly catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxTMB in the presence of HO. The obvious color change offered accurate determination of the HO concentration by recording the absorbance at 652 nm using a UV-vis spectrophotometer.

View Article and Find Full Text PDF

In this contribution, a one-pot method possessing the advantages of easy preparation, rapidness, efficiency and environmental friendliness has been developed for the first time for the facile synthesis of highly fluorescent actinian nickel-doped carbon nanoflowers (Ni-CNFWs) by using nickel(ii)acetylacetonate as a metal-carbon source. Various characterization studies indicate that metal nickel atoms have been successfully doped into carbon nanoflower frameworks with a weight percentage of 1.46 wt%.

View Article and Find Full Text PDF

An OFF-ON detection method for Cu was developed at the AgAu bimetallic nanoparticle decorated nitrogen-doped graphene (AgAu-NG) nanocomposite modified electrode. The measurement was based on the copper-catalyzed oxidation of cysteamine (Cys) to regulate the oxidation peak current of Ag. In the absence of Cu, Cys can bind to the surface of AgAu-NG via the Ag-S or Au-S bond, thus leading to an obvious decrease of the oxidation peak current of Ag.

View Article and Find Full Text PDF

Carbon nanodots doped with boron and nitrogen (BN-CDs) with an average diameter of around 11 nm were prepared by a hydrothermal approach using adenine and 3-aminobenzene boronic acid as the starting materials. The atomic ratio of boron to nitrogen atomic in the BN-CDs is approximately 1:1. This indicates that a large fraction of N atoms goes lost during preparation because the B/N ratio of the precursors is about 1:6.

View Article and Find Full Text PDF

A glassy carbon electrode (GCE) was modified with a nanocomposite prepared from nitrogen-doped reduced graphene oxide (N-rGO) and single walled carbon nanotubes (SWCNTs), and then loaded with platinum nanoparticles (Pt NPs) to obtain a voltammetric sensor for daunorubicin (DNR). Reductive doping of GO and the crystallization of the Pt NPs were carried out in a one-step hydrothermal process. The modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry.

View Article and Find Full Text PDF

In this paper, a novel electrochemical sensor based on Au nanoparticles/8-aminoquinoline functionalized graphene oxide (AuNPs/GAQ) nanocomposite was developed and tested for the first time for detection of paraquat (PQ). The morphology and composition of AuNPs/GAQ nanocomposite were characterized by various techniques, including transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy. Cyclic voltammetry and differential pulse voltammetry were utilized to investigate the electrochemical performances of AuNPs/GAQ nanocomposite modified glassy carbon electrode.

View Article and Find Full Text PDF

In this study, sulfur-nitrogen co-doped carbon nanoribbon (SNCNR) polymers with stable dual-emission fluorescence were synthesized using a one-step traditional hydrothermal method of 6-mercaptopurine in an aqueous methanol solution. Unexpectedly, the as-prepared SNCNRs with excitation-independent emission, as carbon nanomaterial derivatives, showed stable dispersions of a reticular-like shape and different lengths in the skeleton diameter. Compared with other carbon nanomaterials, the SNCNRs dramatically improved the electronic properties and surface chemical reactivities, and exhibited a sensitive ratiometric response to quercetin (Que) because of the Meisenheimer-like complexes formed through π-π stacking and electrostatic interaction.

View Article and Find Full Text PDF

An electrochemical sensor is described for the simultaneous determination of the pollutants catechol (CC) and hydroquinone (HQ). A glassy carbon electrode (GCE) was modified with reduced graphene oxide, FeO and gold nanoparticles and then showed a pair of well-defined voltammetric peaks for CC and HQ. Its oxidation peak potentials (located at 0.

View Article and Find Full Text PDF