Innovations are urgently required for clinical development of antibacterials against multidrug-resistant organisms. Therefore, a European, public-private working group (STAT-Net; part of Combatting Bacterial Resistance in Europe [COMBACTE]), has reviewed and tested several innovative trials designs and analytical methods for randomized clinical trials, which has resulted in 8 recommendations. The first 3 focus on pharmacokinetic and pharmacodynamic modeling, emphasizing the pertinence of population-based pharmacokinetic models, regulatory procedures for the reassessment of old antibiotics, and rigorous quality improvement.
View Article and Find Full Text PDFBecause of increasing antimicrobial resistance and the shortage of new antibiotics, there is a growing need to optimize the use of old and new antibiotics. Modelling of the pharmacokinetic/pharmacodynamic (PK/PD) characteristics of antibiotics can support the optimization of dosing regimens. Antimicrobial efficacy is determined by susceptibility of the drug to the microorganism and exposure to the drug, which relies on the PK and the dose.
View Article and Find Full Text PDFObjectives: To calculate the clavulanic acid exposure of oral amoxicillin/clavulanic acid dosing regimens, to investigate variability using a population pharmacokinetic model and to explore target attainment using Monte Carlo simulations.
Methods: Two groups of healthy male volunteers received amoxicillin/clavulanic acid tablets at the start of a standard meal on two separate days 1 week apart. One group (n = 14) received 875/125 mg q12h and 500/125 mg q8h and the other group (n = 15) received 500/125 mg q12h and 250/125 mg q8h.
Objectives: To describe the population pharmacokinetics of oral amoxicillin and to compare the PTA of current dosing regimens.
Methods: Two groups, each with 14 healthy male volunteers, received oral amoxicillin/clavulanic acid tablets on two separate days 1 week apart. One group received 875/125 mg twice daily and 500/125 mg three times daily and the other group 500/125 mg twice daily and 250/125 mg three times daily.
J Chromatogr B Analyt Technol Biomed Life Sci
June 2009
The drug combination rifampicin and clarithromycin is used in regimens for infections caused by Mycobacteria. Rifampicin is a CYP3A4 inducer while clarithromycin is known to inhibit CYP3A4. During combined therapy rifampicin concentrations may increase and clarithromycin concentrations may decrease.
View Article and Find Full Text PDF