Publications by authors named "Femke L Groeneweg"

Scaffolding proteins underlying postsynaptic membrane specializations are important structural and functional components of both excitatory and inhibitory synapses. At inhibitory synapses, gephyrin was identified as anchoring protein. Gephyrin self-assembles into a complex flat submembranous lattice that slows the lateral mobility of glycine and GABA receptors, thus allowing for their clustering at postsynaptic sites.

View Article and Find Full Text PDF

Recent advances in live cell imaging have provided a wealth of data on the dynamics of transcription factors. However, a consistent quantitative description of these dynamics, explaining how transcription factors find their target sequences in the vast amount of DNA inside the nucleus, is still lacking. In the present study, we have combined two quantitative imaging methods, single-molecule microscopy and fluorescence recovery after photobleaching, to determine the mobility pattern of the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR), two ligand-activated transcription factors.

View Article and Find Full Text PDF

The balance between corticosteroid actions induced via activation of the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) determines the brain's response to stress. While both receptors are best known for their delayed genomic role, it has become increasingly evident that they can also associate with the plasma membrane and act as mediators of rapid, nongenomic signalling. Nongenomic corticosteroid actions in the brain are required for the coordination of a rapid adaptive response to stress; membrane-associated MRs and GRs play a major role herein.

View Article and Find Full Text PDF

In response to a stressful encounter, the brain activates a comprehensive stress system that engages the organism in an adaptive response to the threatening situation. This stress system acts on multiple peripheral tissues and feeds back to the brain; one of its key players is the family of corticosteroid hormones. Corticosteroids affect brain functioning through both delayed, genomic and rapid, non-genomic mechanisms.

View Article and Find Full Text PDF