Am J Physiol Regul Integr Comp Physiol
August 2024
Central administration of valine has been shown to cause hyperphagia in fish. Although mechanistic target of rapamycin (mTOR) is involved in this response, the contributions to feed intake of central and peripheral metabolite changes due to excess valine are unknown. Here, we investigated whether intracerebroventricular injection of valine modulates central and peripheral metabolite profiles and may provide insights into feeding response in fish.
View Article and Find Full Text PDFThe hypothalamus is a key integrating center that is involved in the initiation of the corticosteroid stress response, and in regulating nutrient homeostasis. Although cortisol, the principal glucocorticoid in humans and teleosts, plays a central role in feeding regulation, the mechanisms are far from clear. We tested the hypothesis that the metabolic changes to cortisol exposure signal an energy excess in the hypothalamus, leading to feeding suppression during stress in fish.
View Article and Find Full Text PDFAlthough teleosts show an elevated insulin response to hyperglycemia, the circulating glucose levels are not normalized as rapidly as in mammals. While this may suggest a lack of target tissue insulin responsiveness, the underlying mechanisms are unclear. We investigated whether changes in skeletal muscle insulin sensitivity and glucose uptake underlie the cortisol-mediated elevated blood glucose levels.
View Article and Find Full Text PDFChronic cortisol exposure suppresses food intake in fish, but the central mechanism(s) involved in appetite regulation are unclear. Stress and the associated increase in cortisol levels increase hepatic gluconeogenesis, leading to hyperglycemia. As hyperglycemia causes a reduction in food intake, we tested the hypothesis that cortisol-induced hyperglycemia suppresses feeding in zebrafish (Danio rerio).
View Article and Find Full Text PDF