Antigenic variation by the malaria parasite Plasmodium falciparum results from switches in expression between members of the multicopy var gene family. These genes encode the variant surface protein PfEMP-1, the primary determinant of the antigenic and cytoadherent properties of infected erythrocytes. Only a single var gene is expressed at a time while the remaining members of the family remain transcriptionally silent.
View Article and Find Full Text PDFNon-coding RNAs (ncRNAs) play an important role in a variety of nuclear processes, including genetic imprinting, RNA interference-mediated transcriptional repression, and dosage compensation. These transcripts are thought to influence chromosome organization and, in some cases, gene expression by directing the assembly of specific chromatin modifications to targeted regions of the genome. In the malaria parasite Plasmodium falciparum, little is known about the regulation of nuclear organization or gene expression, although a notable scarcity of identifiable transcription factors encoded in its genome has led to speculation that this organism may be unusually reliant on chromatin modifications as a mechanism for regulating gene expression.
View Article and Find Full Text PDFA fundamental yet poorly understood aspect of gene regulation in eukaryotic organisms is the mechanisms that control allelic exclusion and mutually exclusive gene expression. In the malaria parasite Plasmodium falciparum, this process regulates expression of the var gene family--a large, hypervariable repertoire of genes that are responsible for the ability of the parasite to evade the host immune system and for pathogenesis of the disease. A central problem in understanding this process concerns the mechanisms that limit expression to a single gene at a time.
View Article and Find Full Text PDFDuring its red blood cell stage, the malaria parasite Plasmodium falciparum can switch its variant surface proteins (P. falciparum erythrocyte membrane protein 1) to evade the host immune response. The var gene family encodes P.
View Article and Find Full Text PDFApical membrane antigen 1 (AMA1) of the human malaria parasite Plasmodium falciparum is synthesized by schizont stage parasites and has been implicated in merozoite invasion of host erythrocytes. Phage-display techniques have recently been used to identify two 15-residue peptides, F1 and F2, which bind specifically to P. falciparum AMA1 and inhibit parasite invasion of erythrocytes [Li, F.
View Article and Find Full Text PDFApical membrane antigen-1 (AMA1) is a transmembrane protein present on the surface of merozoites that is thought to be involved in the process of parasite invasion of host erythrocytes. Although it is the target of a natural immune response that can inhibit invasion, little is known about the molecular mechanisms by which AMA1 facilitates the invasion process. In an attempt to identify peptides that specifically interact with and block the function of AMA1, a random peptide library displayed on the surface of filamentous phage was panned on recombinant AMA1 from Plasmodium falciparum.
View Article and Find Full Text PDF