Spinal cord injury (SCI) is one of the most serious conditions of the central nervous system, causing motor and sensory deficits that lead to a significant impairment in the quality of life. Previous studies have indicated that inosine can promote regeneration after SCI. Here we investigated the effects of inosine on the behavioral and morphological recovery after a compressive injury.
View Article and Find Full Text PDFInjuries to the spinal cord result in permanent disabilities that limit daily life activities. The main reasons for these poor outcomes are the limited regenerative capacity of central neurons and the inhibitory milieu that is established upon traumatic injuries. Despite decades of research, there is still no efficient treatment for spinal cord injury.
View Article and Find Full Text PDFIn the present work we have focused on the Histone Deacetylase (HDAC) control of myeloid cells behavior during Xenopus tail regeneration. Here we show that myeloid differentiation is crucial to modulate the regenerative ability of Xenopus tadpoles in a HDAC activity-dependent fashion. HDAC activity inhibition during the first wave of myeloid differentiation disrupted myeloid cells dynamics in the regenerative bud as well the mRNA expression pattern of myeloid markers, such as LURP, MPOX, Spib and mmp7.
View Article and Find Full Text PDFTrauma to the peripheral nervous system (PNS) results in loss of motor and sensory functions. After an injury, a complex series of events begins, allowing axonal regeneration and target reinnervation. However, this regenerative potential is limited by several factors such as age, distance from the lesion site to the target and severity of lesion.
View Article and Find Full Text PDFDespite advances in technology and rehabilitation, no effective therapies are available for patients with SCI, which remains a major medical challenge. This study compared the efficacy of 3 different doses of mesenchymal stem cells (MSCs) administered by intraperitoneal injection as a therapeutic strategy for compressive SCI. We used adult female C57BL/6 mice that underwent laminectomy at the T9 level, followed by spinal-cord compression for 1 min with a 30-g vascular clip.
View Article and Find Full Text PDFFront Immunol
July 2019
Physical contact between dendritic cells (DCs) and T cell lymphocytes is necessary to trigger the immune cell response. CCL19 and CCL21 chemokines bind to the CCR7 receptor of mature DCs, and of T cells and regulate DCs migration to the white pulp (wp) of the spleen, where they encounter lymphocytes. In visceral leishmaniasis (VL), cellular immunosuppression is mediated by impaired DC migration due to the decreased chemokine secretion by endothelium and to the reduced DCs CCR7 expression.
View Article and Find Full Text PDF