Publications by authors named "Fellip R Marcondes"

Phthalates, such as di-n-butyl phthalate (DBP) and di-isopentyl phthalate (DiPeP), are pollutants with a high potential for endocrine disruption. This study aimed to evaluate parameters of endocrine disruption in specimens of the Neotropical fish Rhamdia quelen exposed to DBP and DiPeP through their food. After 30 days of exposure, the fish were anesthetized and then euthanized, and blood, hypothalamus, liver, and gonads were collected.

View Article and Find Full Text PDF

Potentially toxic cyanobacterial blooms (cyanoHABs) have become a problem in public water supply reservoirs. Temperature rise caused by climate change can increase the frequency and intensity of blooms, which may influence the cyanotoxins concentration in the environment. This study aimed to evaluate the effect of the temperature on the responses of a Neotropical catfish exposed to a neurotoxin-rich cyanobacterial crude extract (Raphidiopsis raciborskii T3).

View Article and Find Full Text PDF

Climate change has been one of the most discussed topics in the world. Global warming is characterized by an increase in global temperature, also in aquatic environments. The increased temperature can affect aquatic organisms with lethal and sublethal effects.

View Article and Find Full Text PDF

Diisopentyl phthalate (DiPeP) is a plasticizer with significant offer and application in Brazilian industries. This is attributed to its origin, which is closely linked to the refining process of sugarcane for ethanol production in the country. In this work, we developed a model for trophic exposure to environmentally relevant doses (5, 25, and 125 ng/g of DiPeP) to identify possible target tissues and toxic effects promoted by subchronic exposure to DiPeP in a Neotropical catfish species (Rhamdia quelen).

View Article and Find Full Text PDF

The presence of phthalates constitutes a risk to the health of aquatic environments and organisms. This work aimed to evaluate the toxic effects of di-iso-pentyl-phthalate (DiPeP) at environmentally relevant concentrations of 5, 25, and 125 µg/L in Danio rerio after subchronic exposure for 14 days. DiPeP altered the antioxidant system in the liver (125 μg/L), intestine (25 μg/L), brain, and gills in all concentrations tested.

View Article and Find Full Text PDF