Cells evoke the DNA damage checkpoint (DDC) to inhibit mitosis in the presence of DNA double-strand breaks (DSBs) to allow more time for DNA repair. In budding yeast, a single irreparable DSB is sufficient to activate the DDC and induce cell cycle arrest prior to anaphase for about 12-15 hr, after which cells 'adapt' to the damage by extinguishing the DDC and resuming the cell cycle. While activation of the DNA damage-dependent cell cycle arrest is well understood, how it is maintained remains unclear.
View Article and Find Full Text PDFIn crowded microenvironments, migrating cells must find or make a path. Amoeboid cells are thought to find a path by deforming their bodies to squeeze through tight spaces. Yet, some amoeboid cells seem to maintain a near-spherical morphology as they move.
View Article and Find Full Text PDFThe anterior visceral endoderm (AVE) differs from the surrounding visceral endoderm (VE) in its migratory behavior and ability to restrict primitive streak formation to the opposite side of the mouse embryo. To characterize the molecular bases for the unique properties of the AVE, we combined single-cell RNA sequencing of the VE prior to and during AVE migration with phosphoproteomics, high-resolution live-imaging, and short-term lineage labeling and intervention. This identified the transient nature of the AVE with attenuation of "anteriorizing" gene expression as cells migrate and the emergence of heterogeneities in transcriptional states relative to the AVE's position.
View Article and Find Full Text PDFCell segmentation is the fundamental task. Only by segmenting, can we define the quantitative spatial unit for collecting measurements to draw biological conclusions. Deep learning has revolutionized 2D cell segmentation, enabling generalized solutions across cell types and imaging modalities.
View Article and Find Full Text PDFThe actin filament (F-actin) bundling protein fascin-1 is highly enriched in many metastatic cancers. Fascin's contribution to metastasis have been ascribed to its enhancement of cell migration and invasion. However, mouse genetic studies clearly point to functions also in tumorigenesis, yet without mechanistic underpinnings.
View Article and Find Full Text PDFProjection imaging accelerates volumetric interrogation in fluorescence microscopy, but for multi-cellular samples, the resulting images may lack contrast, as many structures and haze are summed up. Here, we demonstrate rapid projective light-sheet imaging with parameter selection (props) of imaging depth, position and viewing angle. This allows us to selectively image different sub-volumes of a sample, rapidly switch between them and exclude background fluorescence.
View Article and Find Full Text PDFRhoU is an atypical member of the Rho family of small G-proteins, which has N- and C-terminal extensions compared to the classic Rho GTPases RhoA, Rac1 and Cdc42, and associates with membranes through C-terminal palmitoylation rather than prenylation. RhoU mRNA expression is upregulated in prostate cancer and is considered a marker for disease progression. Here, we show that RhoU overexpression in prostate cancer cells increases cell migration and invasion.
View Article and Find Full Text PDFUnderstanding the intricate interplay and inter-connectivity of biological processes across an entire organism is important in various fields of biology, including cardiovascular research, neuroscience, and developmental biology. Here, we present a mesoscopic oblique plane microscope (OPM) that enables whole organism imaging with high speed and subcellular resolution. A microprism underneath the sample enhances the axial resolution and optical sectioning through total internal reflection of the light-sheet.
View Article and Find Full Text PDFCells evoke the DNA damage checkpoint (DDC) to inhibit mitosis in the presence of DNA double-strand breaks (DSBs) to allow more time for DNA repair. In budding yeast, a single irreparable DSB is sufficient to activate the DDC and induce cell cycle arrest prior to anaphase for about 12 to 15 hours, after which cells "adapt" to the damage by extinguishing the DDC and resuming the cell cycle. While activation of the DNA damage-dependent cell cycle arrest is well-understood, how it is maintained remains unclear.
View Article and Find Full Text PDFSignal transduction and cell function are governed by the spatiotemporal organization of membrane-associated molecules. Despite significant advances in visualizing molecular distributions by 3D light microscopy, cell biologists still have limited quantitative understanding of the processes implicated in the regulation of molecular signals at the whole cell scale. In particular, complex and transient cell surface morphologies challenge the complete sampling of cell geometry, membrane-associated molecular concentration and activity and the computing of meaningful parameters such as the cofluctuation between morphology and signals.
View Article and Find Full Text PDFSignal transduction and cell function are governed by the spatiotemporal organization of membrane-associated molecules. Despite significant advances in visualizing molecular distributions by 3D light microscopy, cell biologists still have limited quantitative understanding of the processes implicated in the regulation of molecular signals at the whole cell scale. In particular, complex and transient cell surface morphologies challenge the complete sampling of cell geometry, membrane-associated molecular concentration and activity and the computing of meaningful parameters such as the cofluctuation between morphology and signals.
View Article and Find Full Text PDFMost human cells require anchorage for survival. Cell-substrate adhesion activates diverse signalling pathways, without which cells undergo anoikis-a form of programmed cell death. Acquisition of anoikis resistance is a pivotal step in cancer disease progression, as metastasizing cells often lose firm attachment to surrounding tissue.
View Article and Find Full Text PDFBiomed Opt Express
November 2022
Fast volumetric imaging of large fluorescent samples with high-resolution is required for many biological applications. Oblique plane microscopy (OPM) provides high spatiotemporal resolution, but the field of view is typically limited by its optical train and the pixel number of the camera. Mechanically scanning the sample or decreasing the overall magnification of the imaging system can partially address this challenge, albeit by reducing the volumetric imaging speed or spatial resolution, respectively.
View Article and Find Full Text PDFCan J Diet Pract Res
June 2023
When admitted to the hospital, individuals with celiac disease rely on food handlers for provision of safe, uncontaminated gluten-free meals. We aimed to assess the knowledge of gluten-free diet (GFD) amongst individuals involved in meal preparation for patients. A questionnaire with 10 demographic and 35 test items to assess knowledge of GFD, including workplace scenarios encountered in meal preparation, was administered to food handlers including cooks, utility workers, dietary technicians, and supervisors in 2 tertiary care, university-affiliated hospitals.
View Article and Find Full Text PDFStructured illumination microscopy (SIM) doubles the spatial resolution of a fluorescence microscope without requiring high laser powers or specialized fluorophores. However, the excitation of out-of-focus fluorescence can accelerate photobleaching and phototoxicity. In contrast, light-sheet fluorescence microscopy (LSFM) largely avoids exciting out-of-focus fluorescence, thereby enabling volumetric imaging with low photobleaching and intrinsic optical sectioning.
View Article and Find Full Text PDFZBP1 is an interferon-induced cytosolic nucleic acid sensor that facilitates antiviral responses via RIPK3. Although ZBP1-mediated programmed cell death is widely described, whether and how it promotes inflammatory signaling is unclear. Here, we report a ZBP1-induced inflammatory signaling pathway mediated by K63- and M1-linked ubiquitin chains, which depends on RIPK1 and RIPK3 as scaffolds independently of cell death.
View Article and Find Full Text PDFNeutrophil extracellular traps (NETs) has been demonstrated to regulate the metastasis of breast cancer. In this study, we showed that de novo cholesterol biosynthesis induced by ASPP2 depletion in mouse breast cancer cell 4T1 and human breast cancer cell MDA-MB-231 promoted NETs formation in vitro, as well as in lung metastases in mice intravenously injected with ASPP2-deficient 4T1 cells. Simvastatin and berberine (BBR), cholesterol synthesis inhibitors, efficiently blocked ASPP2-depletion induced NETs formation.
View Article and Find Full Text PDFBackground: With new treatments for non-alcoholic fatty liver disease (NAFLD) on the horizon, it will be important to risk-stratify patients based on degree of fibrosis to allocate treatment to those at highest risk. No studies have examined the complication rates of liver biopsies in patients with NAFLD in the outpatient setting.
Methods: We conducted a retrospective chart review of all outpatient elective liver biopsies for NAFLD at a tertiary care centre over a 10-year period.
A 33-year-old male with no relevant medical history presented with a few months of fatigue and reduced exercise tolerance and was found to have iron-deficiency anemia. An esophagogastroduodenoscopy revealed a cluster of isolated gastric fundal varices with high-risk stigmata. Serologic workup for cirrhosis was negative, and a FibroScan measured liver stiffness at 4.
View Article and Find Full Text PDFA 45-year-old female presented to hospital with confusion and visual disturbances. She had undergone a liver transplant 3 years prior for cirrhosis secondary to primary biliary cholangitis. Computed tomography and magnetic resonance imaging of the brain showed features consistent with posterior reversible encephalopathy syndrome.
View Article and Find Full Text PDFCentrioles are composed of a central cartwheel tethered to nine-fold symmetric microtubule (MT) blades. The centriole cartwheel and MTs are thought to grow from opposite ends of these organelles, so it is unclear how they coordinate their assembly. We previously showed that in Drosophila embryos an oscillation of Polo-like kinase 4 (Plk4) helps to initiate and time the growth of the cartwheel at the proximal end.
View Article and Find Full Text PDFMitotic centrosomes are formed when centrioles start to recruit large amounts of pericentriolar material (PCM) around themselves in preparation for mitosis. This centrosome "maturation" requires the centrioles and also Polo/PLK1 protein kinase. The PCM comprises several hundred proteins and, in Drosophila, Polo cooperates with the conserved centrosome proteins Spd-2/CEP192 and Cnn/CDK5RAP2 to assemble a PCM scaffold around the mother centriole that then recruits other PCM client proteins.
View Article and Find Full Text PDFThe repair of DNA double-strand breaks (DSBs) is essential for safeguarding genome integrity. When a DSB forms, the PI3K-related ATM kinase rapidly triggers the establishment of megabase-sized, chromatin domains decorated with phosphorylated histone H2AX (γH2AX), which act as seeds for the formation of DNA-damage response foci. It is unclear how these foci are rapidly assembled to establish a 'repair-prone' environment within the nucleus.
View Article and Find Full Text PDF