Publications by authors named "Felix Wussow"

Human cytomegalovirus (CMV) is the most common infectious cause of complications post-transplantation, while a CMV vaccine for transplant recipients has yet to be licensed. Triplex, a multiantigen Modified Vaccinia Ankara (MVA)-vectored CMV vaccine candidate based on the immunodominant antigens phosphoprotein 65 (pp65) and immediate-early 1 and 2 (IE1/2), is in an advanced stage of clinical development. However, its limited genetic and expression stability restricts its potential for large-scale production.

View Article and Find Full Text PDF

Background: Although the mpox global health emergency caused by mpox virus (MPXV) clade IIb.1 has ended, mpox cases are still reported due to low vaccination coverage and waning immunity. COH04S1 is a clinically evaluated, multiantigen COVID-19 vaccine candidate built on a fully synthetic platform of the highly attenuated modified vaccinia Ankara (MVA) vector, representing the only FDA-approved smallpox/mpox vaccine JYNNEOS.

View Article and Find Full Text PDF

Hematopoietic cell transplantation (HCT) and chimeric antigen receptor (CAR)-T cell patients are immunocompromised, remain at high risk following SARS-CoV-2 infection, and are less likely than immunocompetent individuals to respond to vaccination. As part of the safety lead-in portion of a phase 2 clinical trial in patients post HCT/CAR-T for hematological malignancies (HM), we tested the immunogenicity of the synthetic modified vaccinia Ankara-based COVID-19 vaccine COH04S1 co-expressing spike (S) and nucleocapsid (N) antigens. Thirteen patients were vaccinated 3-12 months post HCT/CAR-T with two to four doses of COH04S1.

View Article and Find Full Text PDF

Emerging SARS-CoV-2 Omicron subvariants continue to disrupt COVID-19 vaccine efficacy through multiple immune mechanisms including neutralizing antibody evasion. We developed COH04S1, a synthetic modified vaccinia Ankara vector that co-expresses Wuhan-Hu-1-based spike and nucleocapsid antigens. COH04S1 demonstrated efficacy against ancestral virus and Beta and Delta variants in animal models and was safe and immunogenic in a Phase 1 clinical trial.

View Article and Find Full Text PDF

Cell-mediated immunity may contribute to providing protection against SARS-CoV-2 and its variants of concern (VOC). We developed COH04S1, a synthetic multiantigen modified vaccinia Ankara (MVA)-based COVID-19 vaccine that stimulated potent spike (S) and nucleocapsid (N) antigen-specific humoral and cellular immunity in a phase 1 clinical trial in healthy adults. Here, we show that individuals vaccinated with COH04S1 or mRNA vaccine BNT162b2 maintain robust cross-reactive cellular immunity for six or more months post-vaccination.

View Article and Find Full Text PDF

COVID-19 vaccine efficacy is threatened by emerging SARS-CoV-2 variants of concern (VOC) with the capacity to evade protective neutralizing antibody responses. We recently developed clinical vaccine candidate COH04S1, a synthetic modified vaccinia Ankara vector (sMVA) co-expressing spike and nucleocapsid antigens based on the Wuhan-Hu-1 reference strain that showed potent efficacy to protect against ancestral SARS-CoV-2 in Syrian hamsters and non-human primates and was safe and immunogenic in healthy volunteers. Here, we demonstrate that intramuscular immunization of Syrian hamsters with COH04S1 and an analogous Beta variant-adapted vaccine candidate (COH04S351) elicits potent cross-reactive antibody responses and protects against weight loss, lower respiratory tract infection, and lung pathology following challenge with major SARS-CoV-2 VOC, including Beta and the highly contagious Delta variant.

View Article and Find Full Text PDF

Background: COH04S1, a synthetic attenuated modified vaccinia virus Ankara vector co-expressing SARS-CoV-2 spike and nucleocapsid antigens, was tested for safety and immunogenicity in healthy adults.

Methods: This combined open-label and randomised, phase 1 trial was done at the City of Hope Comprehensive Cancer Center (Duarte, CA, USA). We included participants aged 18-54 years with a negative SARS-CoV-2 antibody and PCR test, normal haematology and chemistry panels, a normal electrocardiogram and troponin concentration, negative pregnancy test if female, body-mass index of 30 kg/m or less, and no modified vaccinia virus Ankara or poxvirus vaccine in the past 12 months.

View Article and Find Full Text PDF

Second-generation COVID-19 vaccines could contribute to establish protective immunity against SARS-CoV-2 and its emerging variants. We developed COH04S1, a synthetic multiantigen modified vaccinia Ankara-based SARS-CoV-2 vaccine that co-expresses spike and nucleocapsid antigens. Here, we report COH04S1 vaccine efficacy in animal models.

View Article and Find Full Text PDF

Maternal reinfection of immune women with novel human cytomegalovirus (HCMV) strains acquired during pregnancy can result in symptomatic congenital CMV (cCMV) infection. Novel animal model strategies are needed to explore vaccine-mediated protections against maternal reinfection. To investigate this in the guinea pig cytomegalovirus (GPCMV) model, a strictly in vivo-passaged workpool of a novel strain, the CIDMTR strain (dose, 1 × 10 pfu) was used to infect dams that had been challenged in a previous pregnancy with the 22122 strain, following either sham-immunization (vector only) or vaccination with MVA-vectored gB, gH/gL, or pentameric complex (PC) vaccines.

View Article and Find Full Text PDF

Second-generation COVID-19 vaccines could contribute to establish protective immunity against SARS-CoV-2 and its emerging variants. We developed COH04S1, a synthetic multiantigen Modified Vaccinia Ankara-based SARS-CoV-2 vaccine that co-expresses spike and nucleocapsid antigens. Here, we report COH04S1 vaccine efficacy in animal models.

View Article and Find Full Text PDF

Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We demonstrate the construction of a vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we use this vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity.

View Article and Find Full Text PDF

Although congenital infection by human cytomegalovirus (HCMV) is well recognized as a leading cause of neurodevelopmental defects, HCMV neuropathogenesis remains poorly understood. A major challenge for investigating HCMV-induced abnormal brain development is the strict CMV species specificity, which prevents the use of animal models to directly study brain defects caused by HCMV. We show that infection of human-induced pluripotent-stem-cell-derived brain organoids by a "clinical-like" HCMV strain results in reduced brain organoid growth, impaired formation of cortical layers, and abnormal calcium signaling and neural network activity.

View Article and Find Full Text PDF

Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We developed a novel vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we used this novel vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity.

View Article and Find Full Text PDF

Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We developed a novel vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we used this novel vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity.

View Article and Find Full Text PDF

Human cytomegalovirus (CMV) is a ubiquitous pathogen that causes significant morbidity in some vulnerable populations. Individualized adoptive transfer of ex vivo expanded CMV-specific CD8+ T cells has provided proof-of-concept that immunotherapy can be highly effective, but a chimeric antigen receptor (CAR) approach would provide a feasible method for broad application. We created 8 novel CARs using anti-CMV neutralizing antibody sequences, which were transduced via lentiviral vector into primary CD8+ T cells.

View Article and Find Full Text PDF

(1) Background: A congenital cytomegalovirus (cCMV) vaccine is a major research priority, but the essential glycoprotein target(s) remain unclear. We compared CMV gB (gpgB), gH/gL (gp75/gL), and pentameric complex (gpPC, composed of gH/gL/GP129/GP131/GP133) vaccines in a guinea pig CMV (GPCMV) congenital infection model. (2) Methods: Modified vaccinia virus Ankara (MVA) vaccines expressing GPCMV glycoproteins were used to immunize GPCMV-seronegative, female Hartley guinea pigs (three-dose series, 3 × 10 pfu/dose).

View Article and Find Full Text PDF

: The use of cytomegalovirus (CMV) as a vaccine vector to express antigens against multiple infectious diseases, including simian immunodeficiency virus, Ebola virus, plasmodium, and mycobacterium tuberculosis, in rhesus macaques has generated extraordinary levels of protective immunity against subsequent pathogenic challenge. Moreover, the mechanisms of immune protection have altered paradigms about viral vector-mediated immunity against ectopically expressed vaccine antigens. Further optimization of CMV-vectored vaccines, particularly as this approach moves to human clinical trials will be augmented by a more complete understanding of how CMV engenders mechanisms of immune protection.

View Article and Find Full Text PDF

Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and the causative agent of multiple cancers in immunocompromised patients. To date, there is no licensed prophylactic KSHV vaccine. In this study, we generated a novel subunit vaccine that incorporates four key KSHV envelope glycoproteins required for viral entry in diverse cell types (gpK8.

View Article and Find Full Text PDF

Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and is the causative infectious agent of Kaposi sarcoma and two malignancies of B cell origin. To date, there is no licensed KSHV vaccine. Development of an effective vaccine against KSHV continues to be limited by a poor understanding of how the virus initiates acute primary infection in diverse human cell types.

View Article and Find Full Text PDF

Introduction: It has been almost fifty years since the Towne strain was used by Plotkin and collaborators as the first vaccine candidate for cytomegalovirus (CMV). While that approach showed partial efficacy, there have been a multitude of challenges to improve on the promise of a CMV vaccine. Efforts have been dichotomized into a therapeutic vaccine for patients with CMV-infected allografts, either stem cells or solid organ, and a prophylactic vaccine for congenital infection.

View Article and Find Full Text PDF

As human cytomegalovirus (HCMV) is a common cause of disease in newborns and transplant recipients, developing an HCMV vaccine is considered a major public health priority. Yet an HCMV vaccine candidate remains elusive. Although the precise HCMV immune correlates of protection are unclear, both humoral and cellular immune responses have been implicated in protection against HCMV infection and disease.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is a leading cause of permanent birth defects, highlighting the need to develop an HCMV vaccine candidate. However, HCMV vaccine development is complicated by the varying capacity of neutralizing antibodies (NAb) to interfere in vitro with the HCMV entry routes mediating infection of fibroblast (FB) and epithelial cells (EC). While HCMV infection of FB and EC requires glycoprotein complexes composed of gB and gH/gL/gO, EC infection depends additionally on the envelope pentamer complex (PC) composed of gH, gL, UL128, UL130 and UL131A.

View Article and Find Full Text PDF

Neutralizing antibodies (NAb) interfering with glycoprotein complex-mediated virus entry into host cells are thought to contribute to the protection against herpesvirus infection. However, using herpesvirus glycoprotein complexes as vaccine antigens can be complicated by the necessity of expressing multiple subunits simultaneously to allow efficient complex assembly and formation of conformational NAb epitopes. By using a novel bacterial artificial chromosome (BAC) clone of the clinically deployable Modified Vaccinia Ankara (MVA) vector and exploiting ribosomal skipping mediated by 2A peptides, MVA vectors were generated that expressed self-processing subunits of the human cytomegalovirus (HCMV) pentamer complex (PC) composed of gH, gL, UL128, UL130, and UL131A.

View Article and Find Full Text PDF