The relentless pursuit of understanding matter at ever-finer scales has pushed optical microscopy to surpass the diffraction limit and realize super-resolution microscopy, which enables visualizing structures shorter than the wavelength of the light emitted by the sample. In the present work, we harnessed extreme ultraviolet beams to create sub-μm grating structures, which were revealed by extreme ultraviolet structured illumination microscopy. We establish that the resolution extension is achievable in the extreme ultraviolet, thereby opening the door to significant resolution enhancement, mainly defined by the wavelength employed.
View Article and Find Full Text PDFTomographic Volumetric Additive Manufacturing (TVAM) allows printing of mesoscopic objects within seconds or minutes. In TVAM, tomographic patterns are illuminated onto a rotating glass vial which contains a photosensitive resin. Current pattern optimization is based on a ray optical assumption which ultimately leads to limited resolution around 20 µm and varying throughout the volume of the 3D object.
View Article and Find Full Text PDFConventional (CP) and Fourier (FP) ptychography have emerged as versatile quantitative phase imaging techniques. While the main application cases for each technique are different, namely lens-less short wavelength imaging for CP and lens-based visible light imaging for FP, both methods share a common algorithmic ground. CP and FP have in part independently evolved to include experimentally robust forward models and inversion techniques.
View Article and Find Full Text PDFBul Stiint Sect Stiint Medicale Acad Republicii Pop Romane
May 2003