Publications by authors named "Felix Sunjoo Kim"

Flexible and mechanically robust gas sensors are the key technologies for wearable and implantable electronics. Herein, the authors demonstrate the high-performance, flexible nitrogen dioxide (NO ) chemiresistors using a series of n-type conjugated polymers (CPs: PNDIT2/IM-x) and a polymer dopant (poly(ethyleneimine), PEI). Imine double bonds (C = N) are incorporated into the backbones of the CPs with different imine contents (x) to facilitate strong and selective interactions with NO .

View Article and Find Full Text PDF

The effects of the position of alkoxy side chains in quinoxaline (Qx)-based polymer acceptors (s) on the characteristics of materials and the device parameters of all-polymer solar cells (all-PSCs) are investigated. The alkoxy side chains are selectively located at the , , and both positions in pendant benzenes of Qx units, constructing s denoted as P(QxCN-T2)-, P(QxCN-T2)-, and P(QxCN-T2), respectively. Among them, P(QxCN-T2)- exhibits the deepest energy levels owing to the enhanced electron-withdrawing effect of -positioned alkoxy chains, which is in contrast to P(QxCN-T2)- where -positioned alkoxy chains have an electron-donating property.

View Article and Find Full Text PDF

We investigate the sigmoidal concentration dependence of electrical conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) processed with linear glycol-based additives such as ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG), hexaethylene glycol (HEG), and ethylene glycol monomethyl ether (EGME). We observe that a sharp transition of conductivity occurs at the additive concentration of ~0.6 wt.

View Article and Find Full Text PDF

Synaptic devices, which are considered as one of the most important components of neuromorphic system, require a memory effect to store weight values, a high integrity for compact system, and a wide window to guarantee an accurate programming between each weight level. In this regard, memristive devices such as resistive random access memory (RRAM) and phase change memory (PCM) have been intensely studied; however, these devices have quite high current-level despite their state, which would be an issue if a deep and massive neural network is implemented with these devices since a large amount of current-sum needs to flow through a single electrode line. Organic transistor is one of the potential candidates as synaptic device owing to flexibility and a low current drivability for low power consumption during inference.

View Article and Find Full Text PDF

Quinoxaline (Qx) derivatives are promising building units for efficient photovoltaic polymers owing to their strong light absorption and high charge-transport abilities, but they have been used exclusively in the construction of polymer donors. Herein, for the first time, Qx-based polymer acceptors (P s) were developed by introducing electron-withdrawing cyano (CN) groups into the Qx moiety (QxCN). A series of QxCN-based P s, P(QxCN-T2), P(QxCN-TVT), and P(QxCN-T3), were synthesized by copolymerizing the QxCN unit with bithiophene, (E)-1,2-di(thiophene-2-yl)ethene, and terthiophene, respectively.

View Article and Find Full Text PDF

We report comprehensive and comparative studies on chemical and electrochemical controls of doping characteristics of various poly(3,4-ethylenedioxythiophene) (PEDOT) composites complexed with sulfonates. Chemical treatment of PEDOT composites was conducted with a dedoping agent, tetrakis(dimethylamino)ethylene (TDAE), resulting in the changes in conformation and bulk charge-carrier density. Electrochemical control of doping states was done with a solid-state ionogel based on an ionic liquid dispersed in a polymer matrix.

View Article and Find Full Text PDF

The ease of the molecular orientation of a chromophore has an important effect on the electro-optical (EO) properties of polymeric photorefractive (PR) composites. A derivative of 4-piperidinobenzylidene-malononitrile (PDCST) with an alkoxy group added as a side branch was synthesized to improve the molecular orientation characteristics. Electrophoresis was performed on the polymeric PR composite to which the improved PDCST had been added.

View Article and Find Full Text PDF

The aggregation properties of conjugated polymers can play a crucial role in their thin film structures and performance of electronic devices. Control of these aggregated structures is particularly important in producing efficient all-polymer solar cells (all-PSCs), considering that strong demixing of the polymer donor and polymer acceptor typically occurs during film formation because of the low entropic contribution to the thermodynamics of the system. Here, three naphthalenediimide (NDI)-based polymer acceptors with different backbone chlorination patterns are developed to investigate the effect of the chlorination patterns on the aggregation tendencies of the polymer acceptors, which greatly influence their crystalline structures, electrical properties, and device performances of the resultant all-PSCs and organic field-effect transistors (OFETs).

View Article and Find Full Text PDF

Here, we fabricate ammonia sensors based on organic transistors by using poly(3-hexylthiophene) (P3HT) blended with tris(pentafluorophenyl)borane (TPFB) as an active layer. As TPFB is an efficient p-type dopant for P3HT, the current level of the blend films can be easily modulated by controlling the blend ratio. The devices exhibit significantly increased on-state and off-state current levels owing to the ohmic current originated from the large number of charge carriers when the active polymer layer contains TPFB with concentrations up to 20 wt % (P3HT:TPFB = 8:2).

View Article and Find Full Text PDF

Surface and nanoscale morphology of thin poly(3-hexylthiophene) (P3HT) films are effectively controlled by blending the polymer with a soluble derivative of fullerene, and then selectively dissolving out the fullerene from the blend films. A combination of the polymer blending with fullerene and a use of diiodooctane (DIO) as a processing additive enhances the molecular ordering of P3HT through nanoscale phase separation, compared to the pristine P3HT. In organic thin-film transistors, such morphological changes in the blend induce a positive effect on the field-effect mobility, as the mobility is ~5-7 times higher than in the pristine P3HT.

View Article and Find Full Text PDF

In this study, we combine solubility-driven formation of poly(3-hexylthiophene) (P3HT) nanoaggregates and ion-gel-based organic electrolyte-gated transistors (OEGTs), to develop high-performance low-voltage switching devices. By solution blending of a good solvent (chloroform) and a poor solvent (acetone), we obtain dispersions of P3HT nanoaggregates. The aggregation and molecular ordering of P3HT are analyzed by UV-Vis absorption spectroscopy, atomic force microscopy imaging, and X-ray diffraction.

View Article and Find Full Text PDF

Control of the nanoscale molecular ordering and charge-carrier mobility of poly(3-hexylthiophene-2,5-diyl) (P3HT) was achieved by the combined use of processing additives and thermal annealing. Evaluation of four processing additives (1,8-octanedithiol (ODT), diphenyl ether (DPE), 1-chloronaphthalene (CN), and 1,8-diiodooctane (DIO), which are commonly used for the fabrication of organic solar cells, revealed that the nanoscale molecular ordering and, therefore, the charge-carrier mobility, are largely affected by the additives, as demonstrated by spectral absorption, X-ray diffraction, and atomic force microscopy. Thermal annealing selectively influenced the morphological changes, depending on the solubility of P3HT in the additive at high temperature.

View Article and Find Full Text PDF

The molecular orientation of a chromophore importantly affects the electro-optic characteristics of polymeric photorefractive composites. We designed methyl, ethyl, and isopropyl derivatives of 4-piperidinobenzylidene-malononitrile (PDCST) with the aim of enhancing molecular orientation properties, and investigated the effects of alkyl substitution on the electro-optic properties and response times of polymeric photorefractive composites. The three alkyl-substituted PDCSTs showed enhanced electro-optic responses and photorefractive grating buildup rates.

View Article and Find Full Text PDF

We investigated the photorefractivity enhancement of polymeric composites by introducing gold nanoparticles (NPs). The gold NPs enhance the photocharge generation rate of sensitizers through plasmon resonance coupling achieved between NPs and sensitizers. Systematic studies show that the presence of gold NPs has increased photocharge generation efficiency, photoconductivity, diffraction efficiency, refractive index modulation, and photorefractive (PR) grating formation rate.

View Article and Find Full Text PDF

High-mobility p-type and ambipolar conjugated polymers have been widely reported. However, high-mobility n-type conjugated polymers are still rare. Herein we present poly(tetraazabenzodifluoranthene diimide)s, PBFI-T and PBFI-BT, which exhibit a novel two-dimensional (2D) π-conjugation along the main chain and in the lateral direction, leading to high-mobility unipolar n-channel transport in field-effect transistors.

View Article and Find Full Text PDF

We demonstrate the use of n/p polymer/polymer heterojunctions deposited by sequential solution processing to fabricate ambipolar field-effect transistors and complementary logic circuits. Electron and hole mobilities in the transistors were ∼0.001-0.

View Article and Find Full Text PDF

We report studies of bulk heterojunction solar cells composed of self-assembled poly(3-butylthiophene) nanowires (P3BT-nw) as the donor component with a fullerene acceptor. We show that the nanostructure of these devices is the single most important variable determining their performance, and we use a combination of solvent and thermal annealing to control it. A combination of conductive and photoconductive atomic force microscopy provides direct connections between local nanostructure and overall device performance.

View Article and Find Full Text PDF

The synthesis and characterization of two new thiophene copolymers with backbone phthalimide units is reported. Thin-film optical and wide-angle X-ray diffraction measurements indicate extended electronic conjugation and close intermolecular pi-stacking for both polymers. Ambient carrier mobility of thin-film transistors prepared from these polymers is as high as 0.

View Article and Find Full Text PDF

Poly(3-butylthiophene) (P3BT) nanowires, prepared by solution-phase self-assembly, have been used to construct highly efficient P3BT/fullerene nanocomposite solar cells. The fullerene/P3BT nanocomposite films showed an electrically bicontinuous nanoscale morphology with average field-effect hole mobilities as high as 8.0 x 10(-3) cm2/Vs due to the interconnected P3BT nanowire network revealed by TEM and AFM imaging.

View Article and Find Full Text PDF