Automatic potential energy surface (PES) exploration is important to a better understanding of reaction mechanisms. Existing automatic PES mapping tools usually rely on predefined knowledge or computationally expensive on-the-fly quantum-chemical calculations. In this work, we have developed the PESmapping algorithm for discovering novel reaction pathways and automatically mapping out the PES using merely one starting species is present.
View Article and Find Full Text PDFThe front cover artwork is provided by Prof. K. Leonhard's group at RWTH Aachen University.
View Article and Find Full Text PDFThis work presents a novel parametrization for the ReaxFF formalism as a means to investigate reaction processes of chlorinated organic compounds. Force field parameters cover the chemical elements C, H, O, Cl and were obtained using a novel optimization approach involving relaxed potential energy surface scans as training targets. The resulting ReaxFF parametrization shows good transferability, as demonstrated on two independent ab initio validation sets.
View Article and Find Full Text PDFIn our two-paper series, we first present the development of ReaxFF CHOCl parameters using the recently published ParAMS parametrization tool. In this second part, we update the reactive Molecular Dynamics - Quantum Mechanics coupling scheme ChemTraYzer and combine it with our new ReaxFF parameters from Part I to study formation and decomposition processes of chlorinated dibenzofurans. We introduce a self-learning method for recovering failed transition-state searches that improves the overall ChemTraYzer transition-state search success rate by 10 percentage points to a total of 48 %.
View Article and Find Full Text PDFThe development of a reaction model is often a time-consuming process, especially if unknown reactions have to be found and quantified. To alleviate the reaction modeling process, automated procedures for reaction space exploration are highly desired. We present ChemTraYzer-TAD, a new reactive molecular dynamics acceleration technique aimed at efficient reaction space exploration.
View Article and Find Full Text PDFAnharmonicity can greatly affect rate constants. One or even several orders of magnitude of deviation are found for obtaining rate constants using the standard rigid-rotor harmonic-oscillator model. In turn, reactive molecular dynamics (MD) simulations are a powerful way to explore chemical reaction networks and calculate rate constants from the fully anharmonic potential energy surface.
View Article and Find Full Text PDFAn automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format.
View Article and Find Full Text PDF