Objective: Direct cortical responses (DCR) and axono-cortical evoked potentials (ACEP) are generated by electrically stimulating the cortex either directly or indirectly through white matter pathways, potentially leading to different electrogenic processes. For ACEP, the slow conduction velocity of axons (median ≈ 4 m.s) is anticipated to induce a delay.
View Article and Find Full Text PDFObjective: The aim of this study was to model how the different parameters of electrical stimulation (intensity, pulse shape, probe geometry) influence the extent of white matter activation.
Methods: The electrical potentials generated by the stimulating electrodes were determined by solving Laplace equation. The temporal evolution of membrane potentials at each nodes of Ranvier of an axon was then computed by solving the coupled system of differential equations describing membrane dynamics and cable propagation.
Objective: Intraoperative measurement of axono-cortical evoked potentials (ACEP) has emerged as a promising tool for studying neural connectivity. However, it is often difficult to determine if the activity recorded by cortical grids is generated by stimulated tracts or by spurious phenomena. This study aimed to identify criteria that would indicate a direct neurophysiological connection between a recording contact and a stimulated pathway.
View Article and Find Full Text PDF