In this erratum, we correct two typing errors from our previously published manuscript [Opt. Express27, 7458 (2019)10.1364/OE.
View Article and Find Full Text PDFQuantum sensing is highly attractive for accessing spectral regions in which the detection of photons is technically challenging: Sample information is gained in the spectral region of interest and transferred via biphoton correlations into another spectral range, for which highly sensitive detectors are available. This is especially beneficial for terahertz radiation, where no semiconductor detectors are available and coherent detection schemes or cryogenically cooled bolometers have to be used. Here, we report on the first demonstration of quantum sensing in the terahertz frequency range in which the terahertz photons interact with a sample in free space and information about the sample thickness is obtained by the detection of visible photons.
View Article and Find Full Text PDFWe report on spontaneous parametric down-conversion (SPDC) in periodically poled lithium niobate (PPLN) using 660 nm pump wavelength and the type 0 phase-matching condition to the terahertz and even sub-terahertz frequency range. Detection of the frequency-shifted signal photons is achieved by using highly efficient and narrowband volume Bragg gratings and an uncooled sCMOS camera. The acquired frequency-angular spectrum shows backward and forward generation of terahertz and sub-terahertz photons by SPDC, as well as up-conversion and higher order quasi phase-matching (QPM).
View Article and Find Full Text PDF