Purpose: The orbital floor is frequently involved in head trauma. Current evidence on the use of reconstruction materials for orbital floor repair is inconclusive. Accordingly, this study aimed to compare the impact of polydioxanone (PDS) foil thickness on reconstruction of the orbital geometry after isolated orbital floor fractures.
View Article and Find Full Text PDFBackground: Orbital floor fractures result in critical changes in the shape and inferior rectus muscle (IRM) position. Radiological imaging of IRM changes can be used for surgical decision making or prediction of ocular symptoms. Studies with a systematic consideration of the orbital floor defect ratio in this context are missing in the literature.
View Article and Find Full Text PDFBackground/aim: Results of Guided Bone Regeneration (GBR) primarily depend on the membrane used. The aim of this study was to compare biocompatibility of different absorbable and non-absorbable membranes by using unrestricted somatic stem cells (USSCs) as an indicator for biocompatibility.
Materials And Methods: Five absorbable membranes (Bio-Gide®, RESODONT®, GENTA-FOIL resorb®, BioMend® and BioMend® Extend™) and one non-absorbable alternative (GORE-TEX®) were colonized with USSCs.
Aim: The biocompatibility of human osteoblasts (HOB) and human unrestricted somatic stem cells (USSCs) with membranes (BioGide®, GORE-TEX®, GENTA-FOIL resorb®, RESODONT®, BioMend®, BioMend® Extend™) was evaluated.
Materials And Methods: After osteogenic differentiation (dexamethasone, ascorbic acid and β-glycerolphosphate) cells were seeded on membranes. On days 1, 3 and 7, attachment, proliferation, cell vitality, cytotoxicty and cell morphology were analyzed.