Publications by authors named "Felix Panis"

Wetlands are globally distributed ecosystems characterized by predominantly anoxic soils, resulting from water-logging. Over the past millennia, low decomposition rates of organic matter led to the accumulation of 20-30% of the world's soil carbon pool in wetlands. Phenolic compounds are critically involved in stabilizing wetland carbon stores as they act as broad-scale inhibitors of hydrolytic enzymes.

View Article and Find Full Text PDF

Over the last millennia, wetlands have been sequestering carbon from the atmosphere via photosynthesis at a higher rate than releasing it and, therefore, have globally accumulated 550 × 10 g of carbon, which is equivalent to 73% of the atmospheric carbon pool. The accumulation of organic carbon in wetlands is effectuated by phenolic compounds, which suppress the degradation of soil organic matter by inhibiting the activity of organic-matter-degrading enzymes. The enzymatic removal of phenolic compounds by bacterial tyrosinases has historically been blocked by anoxic conditions in wetland soils, resulting from waterlogging.

View Article and Find Full Text PDF

In peatlands, bacterial tyrosinases (TYRs) are proposed to act as key regulators of carbon storage by removing phenolic compounds, which inhibit the degradation of organic carbon. Historically, TYR activity has been blocked by anoxia resulting from persistent waterlogging; however, recent events of prolonged summer drought have boosted TYR activity and, consequently, the release of carbon stored in the form of organic compounds from peatlands. Since 30% of the global soil carbon stock is stored in peatlands, a profound understanding of the production and activity of TYRs is essential to assess the impact of carbon dioxide emitted from peatlands on climate change.

View Article and Find Full Text PDF

Polyphenol oxidases (PPOs) are ubiquitously distributed among plants, bacteria, fungi and animals. They catalyze the hydroxylation of monophenols (monophenolase activity) and the oxidation of o-diphenols (diphenolase activity) to o-quinones. PPOs are commonly present as an isoenzyme family.

View Article and Find Full Text PDF

Polyphenol oxidases (PPOs) comprise tyrosinases (TYRs) and catechol oxidases (COs), which catalyse the initial reactions in the biosynthesis of melanin. TYRs hydroxylate monophenolic (monophenolase activity) and oxidize diphenolic (diphenolase activity) substrates, whereas COs react only with diphenols. In order to elucidate the biochemical basis for the different reactions in PPOs, cDNA from walnut leaves was synthesized, the target gene encoding the latent walnut tyrosinase (jrPPO1) was cloned, and the enzyme was heterologously expressed in Escherichia coli.

View Article and Find Full Text PDF