Publications by authors named "Felix N Wirth"

Background: Clinical data warehouses provide harmonized access to healthcare data for medical researchers. Informatics for Integrating Biology and the Bedside (i2b2) is a well-established open-source solution with the major benefit that data representations can be tailored to support specific use cases. These data representations can be defined and improved via an iterative approach together with domain experts and the medical researchers using the platform.

View Article and Find Full Text PDF

Objective: Unlocking the potential of routine medical data for clinical research requires the analysis of data from multiple healthcare institutions. However, according to German data protection regulations, data can often not leave the individual institutions and decentralized approaches are needed. Decentralized studies face challenges regarding coordination, technical infrastructure, interoperability and regulatory compliance.

View Article and Find Full Text PDF

Introduction: The open-source software offered by the Observational Health Data Science and Informatics (OHDSI) collective, including the OMOP-CDM, serves as a major backbone for many real-world evidence networks and distributed health data analytics platforms. While container technology has significantly simplified deployments from a technical perspective, regulatory compliance can remain a major hurdle for the setup and operation of such platforms. In this paper, we present OHDSI-Compliance, a comprehensive set of document templates designed to streamline the data protection and information security-related documentation and coordination efforts required to establish OHDSI installations.

View Article and Find Full Text PDF

Background: Data provenance refers to the origin, processing, and movement of data. Reliable and precise knowledge about data provenance has great potential to improve reproducibility as well as quality in biomedical research and, therefore, to foster good scientific practice. However, despite the increasing interest on data provenance technologies in the literature and their implementation in other disciplines, these technologies have not yet been widely adopted in biomedical research.

View Article and Find Full Text PDF

Background: Modern biomedical research is data-driven and relies heavily on the re-use and sharing of data. Biomedical data, however, is subject to strict data protection requirements. Due to the complexity of the data required and the scale of data use, obtaining informed consent is often infeasible.

View Article and Find Full Text PDF

Background: Data sharing is considered a crucial part of modern medical research. Unfortunately, despite its advantages, it often faces obstacles, especially data privacy challenges. As a result, various approaches and infrastructures have been developed that aim to ensure that patients and research participants remain anonymous when data is shared.

View Article and Find Full Text PDF

Data-driven methods in biomedical research can help to obtain new insights into the development, progression and therapy of diseases. Clinical and translational data warehouses such as Informatics for Integrating Biology and the Bedside (i2b2) and tranSMART are important solutions for this. From the well-known FAIR data principles, which are used to address the aspects of findability, accessibility, interoperability and reusability.

View Article and Find Full Text PDF

Background: The novel coronavirus SARS-CoV-2 rapidly spread around the world, causing the disease COVID-19. To contain the virus, much hope is placed on participatory surveillance using mobile apps, such as automated digital contact tracing, but broad adoption is an important prerequisite for associated interventions to be effective. Data protection aspects are a critical factor for adoption, and privacy risks of solutions developed often need to be balanced against their functionalities.

View Article and Find Full Text PDF