Background: ADAMs (a disintegrin and metalloproteinase) have long been associated with tumor progression. Recent findings indicate that members of the closely related ADAMTS (ADAMs with thrombospondin motifs) family are also critically involved in carcinogenesis. Gene silencing through DNA methylation at CpG loci around e.
View Article and Find Full Text PDFADAM17, a prominent member of the "Disintegrin and Metalloproteinase" (ADAM) family, is an important regulator of endothelial cell proliferation and cell survival. The protease controls vital cellular functions through cleavage of growth factors, cytokines and their receptors including transforming growth factor-alpha (TGF-α), tumor necrosis factor-alpha (TNF-α) and TNF-α receptor 1 (TNFR1). TNF-α is the major inducer of endothelial cell death in cardiovascular diseases.
View Article and Find Full Text PDFADAM17, a prominent member of the 'Disintegrin and Metalloproteinase' (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Here we present evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. PS exposure is tightly coupled to substrate shedding provoked by diverse ADAM17 activators.
View Article and Find Full Text PDFA wide variety of biological processes including differentiation, regeneration, and cancer progression are regulated by shedding of membrane-anchored proteins. One of the major sheddases is A Disintegrin And Metalloprotease-17 (ADAM17) whose extracellular region consists of a pro-, a catalytic, a disintegrin-, and a membrane-proximal domain (MPD) as well as a short juxtamembrane segment of 17 amino acid residues that has been named "Conserved ADAM-seventeeN Dynamic Interaction Sequence" (CANDIS). This segment is involved in substrate recognition.
View Article and Find Full Text PDF