Publications by authors named "Felix Klug"

Tumor infiltrating iNOS+ macrophages under the influence of immunosuppressive tumor microenvironment gets polarized to tumor-promoting and immunosuppressive macrophages, known as tumor-associated macrophages (TAM). Their recruitment and increased density in the plethora of tumors has been associated with poor prognosis in cancer patients. Therefore, retuning of TAM to M1 phenotype would be a key for effective immunotherapy.

View Article and Find Full Text PDF

Inefficient T cell migration is a major limitation of cancer immunotherapy. Targeted activation of the tumor microenvironment may overcome this barrier. We demonstrate that neoadjuvant local low-dose gamma irradiation (LDI) causes normalization of aberrant vasculature and efficient recruitment of tumor-specific T cells in human pancreatic carcinomas and T-cell-mediated tumor rejection and prolonged survival in otherwise immune refractory spontaneous and xenotransplant mouse tumor models.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) play an important role in controlling antitumor T-cell responses and hence represent a considerable obstacle for cancer immunotherapy. The abundance of specific Treg populations in cancer patients has been poorly analyzed so far. Here, we demonstrate that in breast cancer patients, Tregs often control spontaneous effector memory T-cell responses against mammaglobin, a common breast tissue-associated antigen that is overexpressed by breast carcinoma.

View Article and Find Full Text PDF

Background: Insufficient migration and activation of tumor specific effector T cells in the tumor is one of the main reasons for inadequate host anti-tumor immune response. External radiation seems to induce inflammation and activate the immune response. This phase I/II clinical trial aims to evaluate whether low dose single fraction radiotherapy can improve T cell associated antitumor immune response in patients with colorectal liver metastases.

View Article and Find Full Text PDF

Background: The efficiencies of T cell based immunotherapies are affected by insufficient migration and activation of tumor specific effector T cells in the tumor. Accumulating evidence exists on the ability of ionizing radiation to modify the tumor microenvironment and generate inflammation. The aim of this phase I/II clinical trial is to evaluate whether low dose single fraction radiotherapy can improve T cell associated antitumor immune response in patients with pancreatic cancer.

View Article and Find Full Text PDF

Short peptides derived from cellular proteins may escape complete destruction during protein catabolism and finally serve as a showcase in the immune system. Exposed at the cell surface to scrutiny by T cells, MHC:peptide complexes mediate a highly specific and immediate information transfer from diseased cells to the cellular immune system. Numerous clinical vaccination trials have been carried out employing MHC-presented peptides for T-cell activation with encouraging results but so far without a final breakthrough.

View Article and Find Full Text PDF

The RNA ligase-containing or L-complex is the core complex involved in uridine insertion/deletion RNA editing in trypanosome mitochondria. Blue native gels of glycerol gradient-separated fractions of mitochondrial lysate from cells transfected with the TAP-tagged editing protein, LC-8 (TbMP44/KREPB5), show a approximately 1 MDa L-complex band and, in addition, two minor higher molecular weight REL1-containing complexes: one (L*a) co-sedimenting with the L-complex and running in the gel at around 1.2 MDa; the other (L*b) showing a continuous increase in molecular weight from 1 MDa to particles sedimenting over 70S.

View Article and Find Full Text PDF