Publications by authors named "Felix Jakob"

Widespread use of plant protection agents in agriculture is a major cause of pollution. Apart from active ingredients, the environmental impact of auxiliary synthetic polymers should be minimized if they are highly persistent. An alternative to synthetic polymers is the use of natural polysaccharides, which are abundant and biodegradable.

View Article and Find Full Text PDF

Continuous-flow biocatalysis utilizing immobilized enzymes emerged as a sustainable route for chemical synthesis. However, inadequate biocatalytic efficiency from current flow reactors, caused by non-productive enzyme immobilization or enzyme-carrier mismatches in size, hampers its widespread application. Here, we demonstrate a general-applicable and robust approach for the fabrication of a high-performance enzymatic continuous-flow reactor via integrating well-designed scalable isoporous block copolymer (BCP) membranes as carriers with an oriented and productive immobilization employing material binding peptides (MBP).

View Article and Find Full Text PDF

Citrus canker is an infectious bacterial disease and one of the major threats to the orange juice industry, a multibillion-dollar market that generates hundreds of thousands of jobs worldwide. This disease is caused by the Gram-negative bacterium Xanthomonas citri subsp. citri.

View Article and Find Full Text PDF

Orthopedic implants such as knee and hip implants are one of the most important types of medical devices. Currently, the surface of the most advanced implants consists of titanium or titanium-alloys with high porosity at the bone-contacting surface leading to superior mechanical properties, excellent biocompatibility, and the capability of inducing osseointegration. However, the increased surface area of porous titanium provides a nidus for bacteria colonization leading to implant-related infections, one of the main reasons for implant failure.

View Article and Find Full Text PDF

In times of a constantly growing world population and increasing demand for food, sustainable agriculture is crucial. The rainfastness of plant protection agents is of pivotal importance to reduce the amount of applied nutrients, herbicides, and fungicides. As a result of protective agent wash-off, plant protection is lost, and soils and groundwater are severely polluted.

View Article and Find Full Text PDF

: Visual prostheses, epiretinal stimulating arrays, are a promising therapy in treating retinal dystrophies and degenerations. In the wake of a new generation of devices, an innovative method for epiretinal fixation of stimulator arrays is required. We present the development of tailor-made bioadhesive peptides (peptesives) for fixating epiretinal stimulating arrays omitting the use of traumatic retinal tacks.

View Article and Find Full Text PDF

Background: Clot formation on foreign surfaces of extracorporeal membrane oxygenation systems is a frequent event. Herein, we show an approach that mimics the enzymatic process of endogenous nitric oxide (NO) release on the oxygenator membrane via a biomimetic, non-fouling microgel coating to spatiotemporally inhibit the platelet (PLT) activation and improve antithrombotic properties. This study aims to evaluate the potential of this biomimetic coating towards NO-mediated PLT inhibition and thereby the reduction of clot formation under flow conditions.

View Article and Find Full Text PDF

A key aspect of the transformation of the economic sector towards a sustainable bioeconomy is the development of environmentally friendly alternatives for hitherto used chemicals, which have negative impacts on environmental health. However, the implementation of an ecotoxicological hazard assessment at early steps of product development to elaborate the most promising candidates of lowest harm is scarce in industry practice. The present article introduces the interdisciplinary proof-of-concept project GreenToxiConomy, which shows the successful application of a Green Toxicology strategy for biosurfactants and a novel microgel-based pesticide release system.

View Article and Find Full Text PDF

The ability of proteins to adsorb irreversibly onto surfaces opens new possibilities to functionalize biological interfaces. Herein, the mechanism and kinetics of adsorption of protein-polymer macromolecules with the ability to equip surfaces with antifouling properties are investigated. These macromolecules consist of the liquid chromatography peak I peptide from which antifouling polymer brushes are grafted using single electron transfer-living radical polymerization.

View Article and Find Full Text PDF

Nitric oxide (NO) continuously generated by healthy endothelium prevents platelet activation and maintains vascular homeostasis. However, when artificial surfaces, like of extracorporeal membrane oxygenator comes in contact with blood, protein adsorption and thereby platelet activation takes place, which eventually leads to thrombus formation. To overcome this, we present an antifouling microgel coating mimicking the function of enzyme glutathione peroxidase to endogenously generate NO in the blood plasma from endogenous NO-donors and maintain a physiological NO flux.

View Article and Find Full Text PDF

A versatile peptide-based toolbox for surface functionalization was established by a combination of a universal material binding peptide (LCI-anchor peptide) and sortase-mediated bioconjugation (sortagging). This toolbox facilitates surface functionalization either as a one- or a two-step strategy. In the case of the one-step strategy, the desired functionality was directly introduced to LCI.

View Article and Find Full Text PDF

Microgels are an emerging class of "ideal" enzyme carriers because of their chemical and process stability, biocompatibility, and high enzyme loading capability. In this work, we synthesized a new type of permanently positively charged poly(-vinylcaprolactam) (PVCL) microgel with 1-vinyl-3-methylimidazolium (quaternization of nitrogen by methylation of -vinylimidazole moieties) as a comonomer (PVCL/VimQ) through precipitation polymerization. The PVCL/VimQ microgels were characterized with respect to their size, charge, swelling degree, and temperature responsiveness in aqueous solutions.

View Article and Find Full Text PDF

Sortase-mediated ligation (sortagging) is commonly performed using the sortase A (SaSrtA) that strictly recognizes the N-terminal glycine residue. In this work, a rational design of sortase A (SpSrtA) for improved transpeptidase activity toward different N-terminal amino acid residues was conducted. The generated variant SpSrtA M3 (E189H/V206I/E215A) showed up to 6.

View Article and Find Full Text PDF

Invited for the cover of this issue is Ulrich Schwaneberg and co-workers at RWTH Aachen University and DWI Leibniz-Institut für Interaktive Materialien. The image depicts a loop engineered, and backbone cyclized Staphylococcus aureus sortase A which shows enhanced robustness in site-specific protein and peptide modifications. Read the full text of the article at 10.

View Article and Find Full Text PDF

Staphylococcus aureus sortase A (SaSrtA) is widely used for site-specific protein modifications, but it lacks the robustness for performing bioconjugation reactions at elevated temperatures or in presence of denaturing agents. Loop engineering and subsequent head-to-tail backbone cyclization of SaSrtA yielded the cyclized variant CyM6 that has a 7.5 °C increased melting temperature and up to 4.

View Article and Find Full Text PDF

Polydimethylsiloxane (PDMS) is a synthetic material with excellent properties for biomedical applications because of its easy fabrication method, high flexibility, permeability to oxygen, transparency, and potential to produce high-resolution structures in the case of lithography. However, PDMS needs to be modified to support homogeneous cell attachments and spreading. Even though many physical and chemical methods, like plasma treatment or extracellular matrix coatings, have been developed over the last decades to increase cell-surface interactions, these methods are still very time-consuming, often not efficient enough, complex, and can require several treatment steps.

View Article and Find Full Text PDF

Enzyme immobilization has been widely used to improve the stability and recyclability of enzymes in industrial processes. In this work, a sortase-mediated and therefore selective covalent immobilization strategy (sortagging) for enzymes on microgels (GelZyms) was investigated. Aqueous microgels were synthesized from poly(-vinylcaprolactam)/glycidyl methacrylate (PVCL/GMA) and tagged with the sortase A recognition peptide sequence (LPETG) or its nucleophilic counterpart-tag (GGG).

View Article and Find Full Text PDF

Enzyme immobilization is extensively studied to improve enzyme properties in catalysis and analytical applications. Here, we introduce a simple and versatile enzyme immobilization platform based on adhesion-promoting peptides, namely Matter-tags. Matter-tags immobilize enzymes in an oriented way as a dense monolayer.

View Article and Find Full Text PDF

Biadhesive peptides (peptesives) are an attractive tool for assembling two chemically different materials-for example, stainless steel and polycaprolactone (PCL). Stainless steel is used in medical stents and PCL is used as a biodegradable polymer for fabrication of tissue growth scaffolds and drug delivering micro-containers. Biadhesive peptides are composed of two domains (e.

View Article and Find Full Text PDF

Accumulation of plastics in the environment became a geological indicator of the Anthropocene era. An effective reduction of long-lasting plastics requires a treatment with micro-organisms that release polymer-degrading enzymes. Polymer binding peptides function as adhesion promoters and enable a targeted binding of whole cells to polymer surfaces.

View Article and Find Full Text PDF

The functionalization of polymer surfaces by polymer-binding peptides offers tremendous opportunities for directed immobilization of enzymes, bioactive peptides, and antigens. The application of polymer-binding peptides as adhesion promoters requires reliable and stable binding under process conditions. Molecular modes of interactions between material surfaces, peptides, and solvent are often not understood to an extent that enables (semi-) rational design of polymer-binding peptides, hindering the full exploitation of their potential.

View Article and Find Full Text PDF

Sulfation is an important way for detoxifying xenobiotics and endobiotics including catechols. Enzymatic sulfation occurs usually with high chemo- and/or regioselectivity under mild reaction conditions. In this study, a two-step p-NPS-4-AAP screening system for laboratory evolution of aryl sulfotransferase B (ASTB) was developed in 96-well microtiter plates to improve the sulfate transfer efficiency toward catechols.

View Article and Find Full Text PDF

To date, commercial laccase preparations are used in the food, textile, and paper and pulp industries (mild pH). Laccases are attractive in the synthesis of dye molecules or oxidative lignin treatment, which take place at high pH (≥8.0).

View Article and Find Full Text PDF

Adhesion promoting peptides have been reported to enable efficient enzyme immobilization on various material surfaces. Here we report the first immobilization of a synthetic Grubbs-Hoveyda (GH) type catalyst on two different materials (silica and polypropylene). To this end, the GH catalyst was coupled to an engineered (F16C) variant of the adhesion promoting peptide LCI through thiol-maleimide "click" reaction.

View Article and Find Full Text PDF

Accumulation of microplastic in the environment and food chain will be a grand challenge for our society. Polyurethanes are widely used synthetic polymers in medical (e.g.

View Article and Find Full Text PDF