Asciminib is a first-in-class allosteric inhibitor of the kinase activity of BCR::ABL1, specifically targeting the ABL myristoyl pocket (STAMP). This review focuses on the pharmacokinetic (PK) and pharmacodynamic data of asciminib, which is approved at a total daily dose of 80 mg for the treatment of adult patients with chronic myeloid leukemia in chronic phase who are either resistant or intolerant to ≥ 2 tyrosine kinase inhibitors or those harboring the T315I mutation (at a dose of 200 mg twice daily). Asciminib is predicted to be almost completely absorbed from the gut, with an absolute bioavailability (F) of approximately 73%.
View Article and Find Full Text PDFIcenticaftor (QBW251) is a potentiator of the cystic fibrosis transmembrane conductance regulator protein and is currently in clinical development for the treatment of chronic obstructive pulmonary disease and chronic bronchitis. An absorption, distribution, metabolism, and excretion study was performed at steady state to determine the pharmacokinetics, mass balance, and metabolite profiles of icenticaftor in humans. In this open-label study, six healthy men were treated with unlabeled oral icenticaftor (400 mg b.
View Article and Find Full Text PDFA drug-drug interaction (DDI) study was conducted to evaluate the effect of icenticaftor (QBW251) on the pharmacokinetics (PK) of a 5-probe cytochrome P450 (CYP) substrate cocktail, guided by in vitro studies in human hepatocytes and liver microsomes. Another DDI study investigated the effect of icenticaftor on the PK and pharmacodynamics (PD) of a monophasic oral contraceptive (OC) containing ethinyl estradiol (EE) and levonorgestrel (LVG) in premenopausal healthy female subjects. The static-mechanistic DDI assessment indicated that icenticaftor may moderately induce the metabolic clearance of co-medications metabolized by CYP3A4 (area under the concentration-time curve [AUC] ratio: 0.
View Article and Find Full Text PDFHepatic bile acid regulation is a multifaceted process modulated by several hepatic transporters and enzymes. Drug-induced cholestasis (DIC), a main type of drug-induced liver injury (DILI), denotes any drug-mediated condition in which hepatic bile flow is impaired. Our ability in translating preclinical toxicological findings to human DIC risk is currently very limited, mainly due to important interspecies differences.
View Article and Find Full Text PDFIt is common practice in drug discovery and development to predict in vivo hepatic clearance from in vitro incubations with liver microsomes or hepatocytes using the well-stirred model (WSM). When applying the WSM to a set of approximately 3000 Novartis research compounds, 73% of neutral and basic compounds (extended clearance classification system [ECCS] class 2) were well-predicted within 3-fold. In contrast, only 44% (ECCS class 1A) or 34% (ECCS class 1B) of acids were predicted within 3-fold.
View Article and Find Full Text PDFRibociclib is an orally bioavailable, selective cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor. CDK4/6 inhibition by ribociclib leads to retinoblastoma tumor suppressor protein (Rb) reactivation, thereby restoring Rb-mediated cell cycle arrest. Ribociclib is approved for the treatment of patients with hormone receptor-positive/human epidermal growth factor receptor-2-negative (HR+/HER2-) advanced breast cancer (ABC), at the dose of 600 mg once daily (QD) during cycles of 21 days on/7 days off, with optional dose reduction to 400 mg and 200 mg.
View Article and Find Full Text PDFDrug-drug interactions (DDIs) involving hepatic organic anion transporting polypeptides 1B1/1B3 (OATP1B) can be substantial, however, challenges remain for predicting interaction risk. Emerging evidence suggests that endogenous biomarkers, particularly coproporphyrin-I (CP-I), can be used to assess in vivo OATP1B activity. The present work under the International Consortium for Innovation and Quality in Pharmaceutical Development was aimed primarily at assessing CP-I as a biomarker for informing OATP1B DDI risk.
View Article and Find Full Text PDFMadin-Darby canine kidney (MDCK) cells are widely used to study epithelial cell functionality. Their low endogenous drug transporter protein levels make them an amenable system to investigate transepithelial permeation and drug transporter protein activity after their transfection. MDCK cells display diverse phenotypic traits, and as such, laboratory-to-laboratory variability in drug permeability assessments is observed.
View Article and Find Full Text PDFBile acid (BA) homeostasis is a complex and precisely regulated process to prevent impaired BA flow and the development of cholestasis. Several reactions, namely hydroxylation, glucuronidation and sulfation are involved in BA detoxification. In the present study, we employed a comprehensive approach to identify the key enzymes involved in BA metabolism using human recombinant enzymes, human liver microsomes (HLM) and human liver cytosol (HLC).
View Article and Find Full Text PDFLoss in potency is commonly observed in early drug discovery when moving from biochemical to more complex cellular systems. Among other factors, low permeability is often considered to cause such potency disconnects.We developed a novel cellular disposition assay in MDCK cells to determine passive uptake clearance (PS), cell-to-medium ratios at steady-state () and the time to reach 90% steady-state (TTSS) from a single experiment in a high-throughput format.
View Article and Find Full Text PDFAsciminib is a first-in-class inhibitor of BCR::ABL1, specifically targeting the ABL myristoyl pocket. Asciminib is a substrate of CYP3A4 and P-glycoprotein (P-gp) and possesses pH-dependent solubility in aqueous solution. This report summarizes the results of two phase I studies in healthy subjects aimed at assessing the impact of CYP3A and P-gp inhibitors, CYP3A inducers and acid-reducing agents (ARAs) on the pharmacokinetics (PK) of asciminib (single dose of 40 mg).
View Article and Find Full Text PDFPurpose: Pharmacokinetic drug-drug interactions (DDIs) are investigated to ensure safety for patients receiving concomitant medications. Here, we present a strategy to characterise the DDI potential of remibrutinib, as an inhibitor of drug-metabolising enzymes and drug transporters, and as an inducer. Initial in vitro studies were performed, followed by a biomarker-based assessment of induction in a first in human study, concluded by a clinical study to verify initial results.
View Article and Find Full Text PDFThe ubiquitously expressed ABL1 and ABL2 protein kinases play many important roles in cell function. Although they have been implicated in neuron development, maintenance and signaling, there are no good tool compounds to evaluate the effects of ABL kinase inhibition in the brain. Asciminib is a recently approved drug that specifically and potently inhibits the tyrosine kinase activity of ABL1, ABL2 and that of the chimeric BCR-ABL1 oncoprotein which causes chronic myeloid leukemia.
View Article and Find Full Text PDFClin Pharmacol Drug Dev
February 2022
Asciminib, a first-in-class, Specifically Targeting the Abelson kinase Myristoyl Pocket (STAMP) inhibitor with the potential to overcome resistance to adenosine triphosphate-competitive tyrosine kinase inhibitors, is being investigated in leukemia as monotherapy and in combination with tyrosine kinase inhibitors including imatinib. This phase 1 study in healthy volunteers assessed the pharmacokinetics of asciminib (40 mg single dose) under 2 conditions: when taken with imatinib (steady state; 400 mg once daily) and a low-fat meal (according to imatinib prescription information), or when taken as single-agent under different food conditions. Asciminib plus imatinib with a low-fat meal increased asciminib area under the plasma concentration-time curve from time 0 to infinity and maximum plasma concentration (geometric mean ratios [90% confidence interval], 2.
View Article and Find Full Text PDFRemibrutinib, a novel oral Bruton's Tyrosine Kinase inhibitor (BTKi) is highly selective for BTK, potentially mitigating the side effects of other BTKis. Enzyme phenotyping identified CYP3A4 to be the predominant elimination pathway of remibrutinib. The impact of concomitant treatment with CYP3A4 inhibitors, grapefruit juice and ritonavir (RTV), was investigated in this study in combination with an intravenous microtracer approach.
View Article and Find Full Text PDFThe estimation of the extent of absorption of drug candidates intended for oral drug delivery is an important selection criteria in drug discovery. The use of cell-based transwell assays examining flux across cell-monolayers (e.g.
View Article and Find Full Text PDFRibociclib is approved in combination with endocrine therapy as initial endocrine-based therapy for HR-positive and HER2-negative advanced breast cancer. Ribociclib is primarily metabolized by CYP3A4 and, in vitro, is an inhibitor of CYP3A and CYP1A2. Ritonavir (a strong CYP3A inhibitor) increased ribociclib 400 mg single-dose area under the plasma concentration-time curve (AUC) by 3.
View Article and Find Full Text PDFPhysiologically-based pharmacokinetic (PBPK) modeling has been extensively used to quantitatively translate in vitro data and evaluate temporal effects from drug-drug interactions (DDIs), arising due to reversible enzyme and transporter inhibition, irreversible time-dependent inhibition, enzyme induction, and/or suppression. PBPK modeling has now gained reasonable acceptance with the regulatory authorities for the cytochrome-P450-mediated DDIs and is routinely used. However, the application of PBPK for transporter-mediated DDIs (tDDI) in drug development is relatively uncommon.
View Article and Find Full Text PDFPurpose: To evaluate the PK and safety of siponimod, a substrate of CYP2C9/3A4, in the presence or absence of a CYP3A4 inhibitor, itraconazole.
Methods: This was an open-label study in healthy subjects (aged 18-50 years; genotype: CYP2C9 *1*2 [cohort 1; n = 17] or *1*3 [cohort 2; n = 13]). Subjects received siponimod 0.
Purpose: Ruxolitinib is metabolized by cytochrome P450 (CYP)3A4 and CYP2C9. Dual inhibitors of these enzymes (like fluconazole) lead to increased ruxolitinib exposure relative to a single pathway inhibition of CYP3A4 or CYP2C9. The magnitude of this interaction, previously assessed via physiologically based pharmacokinetic (PBPK) models, was confirmed in an open-label, phase 1 study in healthy subjects.
View Article and Find Full Text PDFWe predicted the drug-drug interaction (DDI) potential of siponimod in presence of cytochrome P450 (CYP)2C9/CYP3A4 inhibitors/inducers in subjects with different CYP2C9 genotypes by physiologically-based pharmacokinetic (PK) modeling. The model was established using in vitro and clinical PK data and verified by adequately predicting siponimod PK when coadministered with rifampin. With strong and moderate CYP3A4 inhibitors, an increased DDI risk for siponimod was predicted for CYP2C9*3/*3 genotype vs.
View Article and Find Full Text PDFRuxolitinib is mainly metabolized by cytochrome P450 (CYP) enzymes CYP3A4 and CYP2C9 followed by minor contributions of other hepatic CYP enzymes in vitro. A physiologically based pharmacokinetic (PBPK) model was established to evaluate the changes in the ruxolitinib systemic exposures with co-administration of CYP3A4 and CYP2C9 perpetrators. The fractions metabolized in the liver via oxidation by CYP enzymes (fm,CYP3A4 = 0.
View Article and Find Full Text PDFPreincubation of a drug transporter with its inhibitor in a cell-based assay may result in the apparent enhancement of the inhibitory potency. Currently, limited data are available on potentiation of transporter inhibition by preincubation (PTIP) for clinically relevant solute-carrier transporters other than OATP1B1 and OATP1B3. Therefore, PTIP was examined systematically using OATP1B1, OATP1B3, OAT1, OAT3, OCT1, OCT2, MATE1, and MATE2-K cell lines.
View Article and Find Full Text PDFThe generation of reliable kinetic parameters to describe P-glycoprotein (P-gp) activity is essential for predicting the impact of efflux transport on gastrointestinal drug absorption. The compound-specific selection of in vitro assay designs and ensuing data analysis methods is explored in this manuscript. We measured transcellular permeability and cellular uptake of five P-gp substrates in Caco-2 and LLC-PK1 MDR1 cells.
View Article and Find Full Text PDF