Artificial photosynthesis for hydrogen production is an important element in the search for green energy sources. The incorporation of photoactive units into mechanically stable 2D materials paves the way toward the realization of ultrathin membranes as mimics for leaves. Here we present and compare two concepts to introduce a photoactive Ru polypyridine complex into ≈1 nm thick carbon nanomembranes (CNMs) generated by low-energy electron irradiation induced cross-linking of aromatic self-assembled monolayers.
View Article and Find Full Text PDFIn recent years, functional molecular nanosheets have attracted much attention in the fields of sensors and energy storage. Here, we present an approach for the synthesis of photoactive metal-organic nanosheets with ultimate molecular thickness. To this end, we apply low-energy electron irradiation induced cross-linking of 4'-(2,2':6',2''-terpyridine-4'-yl)-1,1'-biphenyl-4-thiol self-assembled monolayers on gold to convert them into functional ∼1 nm thick carbon nanomembranes possessing the ability to reversibly complex lanthanide ions (Ln-CNMs).
View Article and Find Full Text PDFWe demonstrate the potential of photothermal deflection spectroscopy (PDS) to study the self-assembly of dye monolayers in situ. Beyond the determination of adsorption kinetics at specific wavelengths, PDS gains its strength from yielding UV-vis absorptance spectra of SAMs in situ, unaffected by scattering, from which supramolecular interactions can be deduced.
View Article and Find Full Text PDFWe describe the preparation and properties of bilayers of graphene- and multi-walled carbon nanotubes (MWCNTs) as an alternative to conventionally used platinum-based counter electrode for dye-sensitized solar cells (DSSC). The counter electrodes were prepared by a simple and easy-to-implement double self-assembly process. The preparation allows for controlling the surface roughness of electrode in a layer-by-layer deposition.
View Article and Find Full Text PDFLongevity of complex organic devices critically depends on the supramolecular integrity of the constituting layers and interfaces. Because the latter are soft matter, they can structurally respond to perturbation of their supramolecular structure by relaxing back to a thermodynamically favorable state. To use this response for self-healing of optoelectronically active layers and particularly interfaces, the degraded dyes in these layers need to be exchanged with non-degraded ones.
View Article and Find Full Text PDFIn this work we elucidate the fundamental difference between aggregate formation of donor-π-acceptor merocyanines in their electronic ground and excited states. While increasing the π-bridge size favors formation of π-stacked aggregates in the dark, irradiation with visible light causes reorientation of the dyes to form prototype H-aggregates with compensating dipole moments. This photoannealing changes the supramolecular structure and its UV-vis spectroscopic properties dramatically, thus being of importance for the function of active layers composed of these dyes.
View Article and Find Full Text PDFThe supramolecular structure essentially determines the properties of organic thin films. Therefore, it is of utmost importance to understand the influence of molecular structure modifications on supramolecular structure formation. In this article, we demonstrate how to tune molecular orientations of amphiphilic 4-hydroxy thiazole derivatives by means of the Langmuir-Blodgett (LB) technique and how this depends on the length of an alkylic spacer between the thiazole chromophore and the polar anchor group.
View Article and Find Full Text PDFCorroles are emerging as an important class of macrocycles with numerous applications because of their peculiar photophysical and metal chelating properties. meso-Pyrimidinylcorroles are easily deprotonated in certain solvents, which changes their absorption and emission spectra as well as their accessible supramolecular structures. To enable control over the formation of supramolecular structures, the dominant corrole species, i.
View Article and Find Full Text PDFMorphologies crucially determine the optoelectronic properties of organic semiconductors. Therefore, hierarchical and supramolecular approaches have been developed for targeted design of supramolecular ensembles of organic semiconducting molecules and performance improvement of, e.g.
View Article and Find Full Text PDFThe potential of an iron(III) corrole complex for use in the detection of nitric oxide (NO) was investigated. The reversible conversion of an dissolved iron(III) corrole to its corresponding nitrosyl complex using gaseous nitric oxide was monitored by UV/Vis spectroscopy. The spectral differences between both coordination compounds were used to determine photometrically small amounts of nitric oxide in the sub-parts-per-million range.
View Article and Find Full Text PDFInvited for this month's cover are the collaborating groups of Dr. Martin Presselt from Friedrich Schiller University Jena, Germany and Prof. Zeev Gross from Technion-Israel Institute of Technology, Haifa, Israel.
View Article and Find Full Text PDF