We demonstrate a bicoloured metal halide perovskite (MHP) light emitting diode (LED) fabricated in two sequential inkjet printing steps. By adjusting the printing parameters, we selectively and deliberately redissolve and recrystallize the first printed emissive layer to add a pattern emitting in a different color. The red light emitting features (on a green light emitting background) have a minimum size of 100 μm and originate from iodide-rich domains in a phase-segregated, mixed MHP.
View Article and Find Full Text PDFThe photooxidative stability of a series of doubly bridged anthracenes was evaluated after their preparation via twofold macrocyclization of a bis(resorcinyl)anthracene. Lightfastness correlates with the energy levels of the highest occupied molecular orbital (HOMO), resulting in superior stability of the tetraesters compared to the tetraethers. The lengths and steric demand of the linker only plays a minor role for the ester-based compounds, which can be prepared in reasonable yields and thus tested in proof-of-concept organic light-emitting diodes.
View Article and Find Full Text PDFWe demonstrate the upscaling of inkjet-printed metal halide perovskite light-emitting diodes. To achieve this, the drying process, critical for controlling the crystallization of the perovskite layer, was optimized with an airblade-like slit nozzle in a gas flow assisted vacuum drying step. This yields large, continuous perovskite layers in light-emitting diodes with an active area up to 1600 mm.
View Article and Find Full Text PDFThe broad application of flexible optoelectronic devices is still hampered by the lack of an ITO-free and highly flexible transparent electrode. Dielectric/metal/dielectric (DMD) transparent electrodes are promising candidates to replace ITO, especially in flexible devices due to their mechanical stability to bending, high optical transmittance and low sheet resistance (<6 Ω sq). This paper reports on organic light emitting diodes (OLEDs) employing a DMD electrode, specifically TiO /Ag/Al:ZnO (doped with 2 wt% AlO) fabricated by sputter deposition, together with a solution-processed organic polymeric emitting layer.
View Article and Find Full Text PDFHigh power conversion efficiency (PCE) inverted organic photovoltaics (OPVs) usually use thermally evaporated MoO as a hole transporting layer (HTL). Despite the high PCE values reported, stability investigations are still limited and the exact degradation mechanisms of inverted OPVs using thermally evaporated MoO HTL remain unclear under different environmental stress factors. In this study, we monitor the accelerated lifetime performance under the ISOS-D-2 protocol (heat conditions 65 °C) of nonencapsulated inverted OPVs based on the thiophene-based active layer materials poly(3-hexylthiophene) (P3HT), poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7), and thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPPTTT) blended with [6,6]-phenyl C-butyric acid methyl ester (PC[70]BM).
View Article and Find Full Text PDFThe application of conjugated materials in organic photovoltaics (OPVs) is usually demonstrated in lab-scale spin-coated devices that are processed under controlled inert conditions. Although this is a necessary step to prove high efficiency, testing of promising materials in air should be done in the early stages of research to validate their real potential for low-cost, solution-processed, and large-scale OPVs. Also relevant for approaching commercialization needs is the use of printing techniques that are compatible with upscaling.
View Article and Find Full Text PDFHigh-performance Cu/ZnO/(Al(2)O(3)) methanol synthesis catalysts are conventionally prepared by co-precipitation from nitrate solutions and subsequent thermal treatment. A new synthesis route is presented, which is based on similar preparation steps and leads to active catalysts, but avoids nitrate contaminated waste water.
View Article and Find Full Text PDF