Background: Given the high prevalence of wounds and their challenging treatment, the research of therapies to improve wound healing is of great clinical interest. In addition, the general consequences of developing chronic wounds constitute a large health economic aspect, which underscores the interest in the development of efficient treatment strategies. Direct cold atmospheric plasma (di_CAP) has been shown to have beneficial effects on microcirculation of human tissue (Kisch et al.
View Article and Find Full Text PDFBackground: Extracorporeal shock wave therapy (ESWT) has shown benefits in patients with nonunion or delayed bone healing, pseudarthrosis, and avascular necrosis of bone. Until now, these effects were explained by the release of growth factors, activation of cells, and microfractures occurring after ESWT. Microcirculation is an important factor in bone healing and may be compromised in fractured scaphoids because its blood supply comes from the distal end.
View Article and Find Full Text PDFElucidation of the precise mechanisms and therapeutic options of extracorporeal shock wave therapy (ESWT) is only at the beginning. Although immediate real-time effects of ESWT on cutaneous hemodynamics have recently been described, the dose response to different ESWT energies in cutaneous microcirculation has never been examined. Thirty-nine Sprague-Dawley rats were randomly assigned to three groups that received either focused high-energy shock waves (group A: total of 1000 impulses, 10 J) to the lower leg of the hind limb, focused low-energy shock waves (group B: total of 300 impulses, 1 J) or placebo shock wave treatment (group C: 0 impulses, 0 J) using a multimodality shock wave delivery system (Duolith SD-1 T-Top, Storz Medical, Tägerwilen, Switzerland).
View Article and Find Full Text PDFBackground: Cold atmospheric plasma (CAP) has proven its benefits in the reduction of various bacteria and fungi in both in vitro and in vivo studies. Moreover, CAP generated by dielectric barrier discharge (DBD) promoted wound healing in vivo. Charged particles, chemically reactive species (such as O3, OH, H2O2, O, NxOy), ultraviolet radiation (UV-A and UV-B), strong oscillating electric fields as well as weak electric currents are produced by DBD operated in air.
View Article and Find Full Text PDFIntroduction: Extensive burn injury has systemic consequences due to capillary leak. After restoration of cellular integrity, infused fluid volume has to be removed partially. This can provoke electrolyte disorders.
View Article and Find Full Text PDFPurpose: In patients with major burn injuries mechanical ventilation is often required for longer periods. Tracheostomy (TS) plays an integral role in airway management. We investigated the effect of TS on ventilation parameters within 8 hours after TS.
View Article and Find Full Text PDF