Publications by authors named "Felix H Lam"

Lignocellulosic biomass remains unharnessed for the production of renewable fuels and chemicals due to challenges in deconstruction and the toxicity its hydrolysates pose to fermentation microorganisms. Here, we show in that engineered aldehyde reduction and elevated extracellular potassium and pH are sufficient to enable near-parity production between inhibitor-laden and inhibitor-free feedstocks. By specifically targeting the universal hydrolysate inhibitors, a single strain is enhanced to tolerate a broad diversity of highly toxified genuine feedstocks and consistently achieve industrial-scale titers (cellulosic ethanol of >100 grams per liter when toxified).

View Article and Find Full Text PDF

Microbial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen.

View Article and Find Full Text PDF

Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions.

View Article and Find Full Text PDF

As Saccharomyces cerevisiae is engineered further as a microbial factory for industrially relevant but potentially cytotoxic molecules such as ethanol, issues of cell viability arise that threaten to place a biological limit on output capacity and/or the use of less refined production conditions. Evidence suggests that one naturally evolved mode of survival in deleterious environments involves the complex, multigenic interplay between disparate stress response and homeostasis mechanisms. Rational engineering of such resistance would require a systems-level understanding of cellular behavior that is, in general, not yet available.

View Article and Find Full Text PDF

Chromatin influences gene expression by restricting access of DNA binding proteins to their cognate sites in the genome. Large-scale characterization of nucleosome positioning in Saccharomyces cerevisiae has revealed a stereotyped promoter organization in which a nucleosome-free region (NFR) is present within several hundred base pairs upstream of the translation start site. Many transcription factors bind within NFRs and nucleate chromatin remodelling events which then expose other cis-regulatory elements.

View Article and Find Full Text PDF