A study was made by a combination of 3D electron tomography reconstruction methods and N adsorption for determining the fractal dimension for nanometric MoS and MoS/Co catalyst particles. DFT methods including Neimarke-Kiselev's method allowed to determine the particle porosity and fractal arrays at the atomic scale for the S-Mo-S(Co) 2D- layers that conform the spherically shaped catalyst particles. A structural and textural correlation was sought by further characterization performed by x-ray Rietveld refinement and Radial Distribution Function (RDF) methods, electron density maps, computational density functional theory methods and nitrogen adsorption methods altogether, for studying the structural and textural features of spherical MoS and MoS/Co particles.
View Article and Find Full Text PDFFexOy/C photocatalysts at different iron content were prepared by the incipient wet impregnation method and calcined at 773 K. The photocatalysts were characterized by means of nitrogen adsorption-desorption isotherms, surface fractal dimension, non-local density functional theory, X-ray diffraction, Rietveld refinement and UV-vis spectroscopy. The photocatalytic activity was evaluated using the photodehydrogenation of ethanol as a model reaction for the production of hydrogen.
View Article and Find Full Text PDF