Mass spectrometry imaging (MSI) is a powerful technique for spatially resolved analysis of metabolites and other biomolecules within biological titissues. However, the inherent low spatial resolution of MSI often limits its ability to provide detailed cellular-level information. To address this limitation, we propose a guided super-resolution (GSR) approach that leverages high-resolution Imaging Mass Cytometry (IMC) images to enhance the spatial resolution of low-resolution MSI data.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) regulate signalling pathways and cell phenotypes, and the visualization of spatially resolved dynamics of PPIs would thus shed light on the activation and crosstalk of signalling networks. Here we report a method that leverages a sequential proximity ligation assay for the multiplexed profiling of PPIs with up to 47 proteins involved in multisignalling crosstalk pathways. We applied the method, followed by conventional immunofluorescence, to cell cultures and tissues of non-small-cell lung cancers with a mutated epidermal growth-factor receptor to determine the co-localization of PPIs in subcellular volumes and to reconstruct changes in the subcellular distributions of PPIs in response to perturbations by the tyrosine kinase inhibitor osimertinib.
View Article and Find Full Text PDFGulf War Illness (GWI) has been consistently linked to exposure to pyridostigmine (PB), N,N-Diethyl-meta-toluamide (DEET), permethrin (PER), and traces of sarin. In this study, diisopropylfluorophosphate (DFP, sarin surrogate) and the GWI-related chemicals were found to reduce the number of functionally active neurons in rat hippocampal slices. These findings confirm a link between GWI neurotoxicants and N-Methyl-D-Aspartate (NMDA)-mediated excitotoxicity, which was successfully reversed by Edelfosine (a phospholipase Cβ (PLCβ3) inhibitor) and Flupirtine (a Kv7 channel agonist).
View Article and Find Full Text PDFBackground: Current clinical trials are investigating gamma frequency sensory stimulation as a potential therapeutic strategy for Alzheimer's disease, yet we lack a comprehensive picture of the effects of this stimulation on multiple aspects of brain function. While most prior research has focused on gamma frequency sensory stimulation, we previously showed that exposing mice to visual flickering stimulation increased MAPK and NFκB signaling in the visual cortex in a manner dependent on duration and frequency of sensory stimulation exposure. Because these pathways control multiple neuronal and glial functions and are differentially activated based on the duration and frequency of flicker stimulation, we aimed to define the transcriptional effects of different frequencies and durations of flicker stimulation on multiple brain functions.
View Article and Find Full Text PDFAlzheimer's disease and other tauopathies are characterized by the misfolding and aggregation of the tau protein into oligomeric and fibrillar structures. Antibodies against tau play an increasingly important role in studying these neurodegenerative diseases and the generation of tools to diagnose and treat them. The development of antibodies that recognize tau protein aggregates, however, is hindered by complex immunization and antibody selection strategies and limitations to antigen presentation.
View Article and Find Full Text PDF